Skip to main content

Advertisement

Log in

Impact of NR5A2 and RYR2 3′UTR polymorphisms on the risk of breast cancer in a Chinese Han population

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Objectives

The NR5A2 and RYR2 genes are important players in steroid metabolism and play an important role in cancer research. In this research, we want to evaluate the effect of NR5A2 and RYR2 polymorphisms on breast cancer (BC).

Methods

Four single nucleotide polymorphisms on NR5A2 and RYR2 were selected to genotype by Agena MassARRAY in 379 BC patients and 407 healthy controls. Using the PLINK software to calculate the Odds ratio (OR) and 95% confidence intervals (CIs) via the logistic regression analysis to evaluate the risk for BC.

Results

We found that NR5A2 rs2246209 significantly decreased the risk of BC with the AA genotype (OR 0.58, 95%CI 0.34–0.99, p = 0.049), and recessive model (OR 0.59, 95%CI 0.35–0.99, p = 0.046); rs12594 in the RYR2 gene significantly decreased the risk of BC in the GG genotype (OR 0.44, 95%CI 0.22–0.88, p = 0.020), and recessive model (OR 0.43, 95%CI 0.21–0.85, p = 0.016). Further stratification analysis showed that NR5A2 rs2246209 was related to a lower incidence of BC affected by age, lymph nodes metastasis, and tumor stage; RYR2 rs12594 was related to a decreased BC risk restricted by age, estrogen receptor (ER), progesterone receptor (PR), menopausal status, tumor size, and tumor stage. Rs12594 in the RyR2 gene remained significant on the genetic susceptibility of PR-positive BC after Bonferroni correction (p < 0.0125).

Conclusions

This study provides an evidence that NR5A2 rs2246209 and RYR2 rs12594 decreased the risk of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

ER:

Estrogen receptor

PR:

Progesterone receptor

LNM:

Lymph node metastasis

ORs:

Odds ratios

CIs:

Confidence intervals

SNP:

Single nucleotide polymorphism

HWE:

Hardy–Weinberg equilibrium

References

  1. Pontikaki A, Sifakis S, Spandidos DA (2016) Endometriosis and breast cancer: a survey of the epidemiological studies. Oncol Lett 11(1):23–30

    CAS  PubMed  Google Scholar 

  2. Li N, Deng Y, Zhou L, Tian T, Yang S, Wu Y, Zheng Y, Zhai Z, Hao Q, Song D et al (2019) Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the Global Burden of Disease Study. J Hematol Oncol 12(1):140

    PubMed  PubMed Central  Google Scholar 

  3. Deng Z, Yang H, Liu Q, Wang Z, Feng T, Ouyang Y, Jin T, Ren H (2016) Identification of novel susceptibility markers for the risk of overall breast cancer as well as subtypes defined by hormone receptor status in the Chinese population. J Hum Genet 61(12):1027–1034

    CAS  PubMed  Google Scholar 

  4. Singh K, He X, Kalife ET, Ehdaivand S, Wang Y, Sung CJ (2018) Relationship of histologic grade and histologic subtype with oncotype Dx recurrence score; retrospective review of 863 breast cancer oncotype Dx results. Breast Cancer Res Treat 168(1):29–34

    CAS  PubMed  Google Scholar 

  5. Dai ZJ, Liu XH, Ma YF, Kang HF, Jin TB, Dai ZM, Guan HT, Wang M, Liu K, Dai C et al (2016) Association between single nucleotide polymorphisms in DNA polymerase kappa gene and breast cancer risk in Chinese Han population: a STROBE-Compliant Observational Study. Medicine (Baltimore) 95(2):e2466

    CAS  Google Scholar 

  6. Wang S, Zou Z, Luo X, Mi Y, Chang H, Xing D (2018) LRH1 enhances cell resistance to chemotherapy by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer. Oncogene 37(24):3243–3259

    CAS  PubMed  Google Scholar 

  7. Chand AL, Wijayakumara DD, Knower KC, Herridge KA, Howard TL, Lazarus KA, Clyne CD (2012) The orphan nuclear receptor LRH-1 and ERα activate GREB1 expression to induce breast cancer cell proliferation. PLoS ONE 7(2):e31593

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez-Marcos PJ, Auwerx J, Schoonjans K (2011) Emerging actions of the nuclear receptor LRH-1 in the gut. Biochim Biophys Acta 1812(8):947–955

    CAS  PubMed  Google Scholar 

  9. Huang SC, Lee CT, Chung BC (2014) Tumor necrosis factor suppresses NR5A2 activity and intestinal glucocorticoid synthesis to sustain chronic colitis. Sci Signal 7(314):ra20

    PubMed  Google Scholar 

  10. Sahini N, Borlak J (2016) Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 177:41–69

    CAS  PubMed  Google Scholar 

  11. Ueno M, Ohkawa S, Morimoto M, Ishii H, Matsuyama M, Kuruma S, Egawa N, Nakao H, Mori M, Matsuo K et al (2015) Genome-wide association study-identified SNPs (rs3790844, rs3790843) in the NR5A2 gene and risk of pancreatic cancer in Japanese. Sci Rep 5:17018

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang X, Gu D, Du M, Wang M, Cao C, Shen L, Kuang M, Tan Y, Huo X, Gong W et al (2014) Associations of NR5A2 gene polymorphisms with the clinicopathological characteristics and survival of gastric cancer. Int J Mol Sci 15(12):22902–22917

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao L, Wang Y, Liang W, Liu L, Pan N, Deng H, Li L, Zou C, Chan FL, Zhou Y (2018) LRH-1 drives hepatocellular carcinoma partially through induction of c-myc and cyclin E1, and suppression of p21. Cancer Manag Res 10:2389–2400

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang LY, Liu LY, Roth DA, Kuo WH, Hwa HL, Chang KJ, Hsieh FJ (2015) The major prognostic features of nuclear receptor NR5A2 in infiltrating ductal breast carcinomas. Int J Genomics 2015:403576

    PubMed  PubMed Central  Google Scholar 

  15. Laver DR (2018) Regulation of the RyR channel gating by Ca(2+) and Mg(2). Biophys Rev 10(4):1087–1095

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ogawa Y (1994) Role of ryanodine receptors. Crit Rev Biochem Mol Biol 29(4):229–274

    CAS  PubMed  Google Scholar 

  17. Femi OF (2018) Genetic alterations and PIK3CA gene mutations and amplifications analysis in cervical cancer by racial groups in the United States. Int J Health Sci (Qassim) 12(1):28–32

    Google Scholar 

  18. Cai W, Zhou D, Wu W, Tan WL, Wang J, Zhou C, Lou Y (2018) MHC class II restricted neoantigen peptides predicted by clonal mutation analysis in lung adenocarcinoma patients: implications on prognostic immunological biomarker and vaccine design. BMC Genomics 19(1):582

    PubMed  PubMed Central  Google Scholar 

  19. Abdul M, Ramlal S, Hoosein N (2008) Ryanodine receptor expression correlates with tumor grade in breast cancer. Pathol Oncol Res : POR 14(2):157–160

    CAS  PubMed  Google Scholar 

  20. Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, Liu P, Hao X, Zhang W, Chen K (2011) Functional SNP in the microRNA-367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci USA 108(33):13653–13658

    CAS  PubMed  Google Scholar 

  21. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29(2):229–232

    CAS  PubMed  Google Scholar 

  22. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M et al (2002) The structure of haplotype blocks in the human genome. Science (New York, NY) 296(5576):2225–2229

    CAS  Google Scholar 

  23. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science (New York, NY) 294(5547):1719–1723

    CAS  Google Scholar 

  24. Chen Q, Sun Y, Wu J, Xiong Z, Niu F, Jin T, Zhao Q (2019) LPP and RYR2 Gene polymorphisms correlate with the risk and the prognosis of astrocytoma. J Mol Neurosci : MN 69(4):628–635

    CAS  PubMed  Google Scholar 

  25. Zhou L, Dong S, Deng Y, Yang P, Zheng Y, Yao L, Zhang M, Yang S, Wu Y, Zhai Z et al (2019) GOLGA7 rs11337, a polymorphism at the microRNA binding site, is associated with glioma prognosis. Mol Ther Nucleic Acids 18:56–65

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Deng Y, Zhou L, Li N, Wang M, Yao L, Dong S, Zhang M, Yang P, Hao Q, Wu Y et al (2019) Impact of four lncRNA polymorphisms (rs2151280, rs7763881, rs1136410, and rs3787016) on glioma risk and prognosis: a case-control study. Mol Carcinog 58(12):2218–2229

    CAS  PubMed  Google Scholar 

  27. Wang J, Shi Y, Wang G, Dong S, Yang D, Zuo X (2019) The association between interleukin-1 polymorphisms and their protein expression in Chinese Han patients with breast cancer. Mol Genet Genomic Med 7:e804

    PubMed  PubMed Central  Google Scholar 

  28. Adamec C (1964) Example of the use of the nonparametric test. Test X2 for comparison of 2 independent examples. Ceskoslovenske zdravotnictvi 12:613–619

    CAS  PubMed  Google Scholar 

  29. Bland JM, Altman DG (2000) Statistics notes. The odds ratio. BMJ (Clin Res ed) 320(7247):1468

    CAS  Google Scholar 

  30. Christopoulos PF, Corthay A, Koutsilieris M (2018) Aiming for the Insulin-like Growth Factor-1 system in breast cancer therapeutics. Cancer Treat Rev 63:79–95

    CAS  PubMed  Google Scholar 

  31. Garattini E, Bolis M, Gianni M, Paroni G, Fratelli M, Terao M (2016) Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 7(27):42661–42682

    PubMed  PubMed Central  Google Scholar 

  32. Nadolny C, Dong X (2015) Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Cancer Biol Ther 16(7):997–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu J, Zou Z, Nie P, Kou X, Wu B, Wang S, Song Z, He J (2016) Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis 7(11):e2454

    PubMed  PubMed Central  Google Scholar 

  34. Pang JB, Molania R, Chand A, Knower K, Takano EA, Byrne DJ, Mikeska T, Millar EKA, Lee CS, O'Toole SA et al (2017) LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness. Oncotarget 8(48):83626–83636

    PubMed  PubMed Central  Google Scholar 

  35. Bianco S, Brunelle M, Jangal M, Magnani L, Gevry N (2014) LRH-1 governs vital transcriptional programs in endocrine-sensitive and -resistant breast cancer cells. Cancer Res 74(7):2015–2025

    CAS  PubMed  Google Scholar 

  36. Kobylewski SE, Henderson KA, Eckhert CD (2012) Identification of ryanodine receptor isoforms in prostate DU-145, LNCaP, and PWR-1E cells. Biochem Biophys Res Commun 425(2):431–435

    CAS  PubMed  Google Scholar 

  37. Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, Monteith GR (2013) Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int 13(1):76

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Perneger TV (1998) What's wrong with Bonferroni adjustments. BMJ 316(7139):1236–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang W, Nie W, Zhang W, Wang Y, Zhu A, Guan X (2016) The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer. Onco Targets Ther 9:4377–4385

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hilton HN, Clarke CL, Graham JD (2018) Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol Cell Endocrinol 466:2–14

    CAS  PubMed  Google Scholar 

  41. Wang B, Yuan F (2018) Comment on "Estrogen receptor alpha (ERS1) SNPs c454–397T>C (PvuII) and c454–351A>G (XbaI) are risk biomarkers for breast cancer development". Mol Biol Rep 46:5

    PubMed  Google Scholar 

  42. Suba Z (2014) Diverse pathomechanisms leading to the breakdown of cellular estrogen surveillance and breast cancer development: new therapeutic strategies. Drug Des Devel Ther 8:1381–1390

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all authors for their contributions and supports. We are also grateful to all participants for providing blood samples. We also thank the National Natural Science Foundation of China (No. 8170100875) for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhan Zhao.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Our present study was approved by the Ethics Committee of Shaanxi Provincial Cancer Hospital. Informed consent forms were signed by all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Wang, X., Zhang, Z. et al. Impact of NR5A2 and RYR2 3′UTR polymorphisms on the risk of breast cancer in a Chinese Han population. Breast Cancer Res Treat 183, 1–8 (2020). https://doi.org/10.1007/s10549-020-05736-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05736-w

Keywords

Navigation