Skip to main content

Advertisement

Log in

Neoadjuvant chemotherapy modifies serum pyrrolidone carboxypeptidase specific activity in women with breast cancer and influences circulating levels of GnRH and gonadotropins

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Functional studies have demonstrated that gonadotropin-releasing hormone (GnRH) regulates cell proliferation, apoptosis, and tissue remodeling. GnRH is metabolized by the proteolytic regulatory enzyme pyrrolidone carboxypeptidase (Pcp) (E.C. 3.4.19.3), which is an omega peptidase widely distributed in fluids and tissues. We previously reported a decrease in both rat and human Pcp activity in breast cancer, suggesting that GnRH may be an important local hormonal factor in the pathogenesis of breast cancer. Recently, we have described that postmenopausal women with breast cancer show lower levels of serum Pcp activity than control postmenopausal women. To determine the effect of neoadjuvant chemotherapy (NACT) on serum Pcp specific activity and circulating levels of GnRH, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and steroid hormones 17-ß-estradiol and progesterone in pre- and postmenopausal women diagnosed with infiltrating ductal carcinoma.

Methods

Serum Pcp activity was measured fluorometrically using pyroglutamyl-ß-naphthylamide. Circulating GnRH levels were dosed using a commercial RIA kit. Circulating LH and FSH levels were measured by enzyme immunoassays. Levels of steroid hormones were measured in serum samples by dissociation-enhanced lanthanide fluorescence immunoassay.

Results and conclusion

Our results show the effect of NACT on the hypothalamic-pituitary axis, with the consequent alteration of circulating gonadotropins in premenopausal women with breast cancer. However, the results obtained in postmenopausal women with breast cancer treated with NACT, that is, the significant decrease in the concentration of GnRH and FSH compared to control postmenopausal women, differ from those obtained for premenopausal women. The only difference between pre- and postmenopausal women is their hormonal profile at the beginning of the study, that is, the presence of menopause and the consequent alteration of the hypothalamic-pituitary–gonadal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ATC:

Anthracycline

AUC:

Area under the curve

BMI:

Body mass index

BSA:

Bovine serum albumin

DELFIA:

Dissociation enhanced lanthanide fluorescence immunoassay

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

FSH:

Follicle-stimulating hormone

GnRH:

Gonadotropin-releasing hormone

LH:

Luteinizing hormone

NACT:

Neoadjuvant chemotherapy

PCL:

Paclitaxel

PGluNNap:

Pyroglutamyl-ß-naphthylamide

Pcp:

Pyrrolidone carboxypeptidase

TNBC:

Triple-negative breast cancers

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

    Article  Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics. CA 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  Google Scholar 

  3. Trivers KF, Fink AK, Partridge AH, Oktay K, Ginsburg ES, Li C, Pollack LA (2014) Estimates of young breast cancer survivors at risk for infertility in the U.S. Oncologist 19(8):814–822. https://doi.org/10.1634/theoncologist.2014-0016

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Nes JG, Putter H, Julien JP, Tubiana-Hulin M, van de Vijver M, Bogaerts J, de Vos M, van de Velde CJ, Cooperating Investigators of the E (2009) Preoperative chemotherapy is safe in early breast cancer, even after 10 years of follow-up; clinical and translational results from the EORTC trial 10902. Breast Cancer Res Treat 115(1):101–113. https://doi.org/10.1007/s10549-008-0050-1-1

    Article  PubMed  Google Scholar 

  5. Chaudhary LN, Wilkinson KH, Kong A (2018) Triple-negative breast cancer: who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am 27(1):141–153. https://doi.org/10.1016/j.soc.2017.08.004

    Article  Google Scholar 

  6. Lambertini M, Santoro L, Del Mastro L, Nguyen B, Livraghi L, Ugolini D, Peccatori FA, Azim HA Jr (2016) Reproductive behaviors and risk of developing breast cancer according to tumor subtype: a systematic review and meta-analysis of epidemiological studies. Cancer Treat Rev 49:65–76. https://doi.org/10.1016/j.ctrv.2016.07.006

    Article  PubMed  Google Scholar 

  7. Lambertini M, Moore HCF, Leonard RCF, Loibl S, Munster P, Bruzzone M, Boni L, Unger JM, Anderson RA, Mehta K, Minton S, Poggio F, Albain KS, Adamson DJA, Gerber B, Cripps A, Bertelli G, Seiler S, Ceppi M, Partridge AH, Del Mastro L (2018) Gonadotropin-releasing hormone agonists during chemotherapy for preservation of ovarian function and fertility in premenopausal patients with early breast cancer: a systematic review and meta-analysis of individual patient-level data. J Clin Oncol 36(19):1981–1990. https://doi.org/10.1200/JCO.2018.78.0858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blumenfeld Z (2017) Investigational and experimental GnRH analogs and associated neurotransmitters. Expert Opin Investig Drugs 26(6):661–667. https://doi.org/10.1080/13543784.2017.1323869

    Article  CAS  PubMed  Google Scholar 

  9. Blumenfeld Z (2018) Fertility preservation by endocrine suppression of ovarian function using gonadotropin-releasing hormone agonists: the end of the controversy? J Clin Oncol 36(19):1895–1897. https://doi.org/10.1200/JCO.2018.78.9347

    Article  PubMed  Google Scholar 

  10. Baumann KH, Kiesel L, Kaufmann M, Bastert G, Runnebaum B (1993) Characterization of binding sites for a GnRH-agonist (buserelin) in human breast cancer biopsies and their distribution in relation to tumor parameters. Breast Cancer Res Treat 25(1):37–46. https://doi.org/10.1007/bf00662399

    Article  CAS  PubMed  Google Scholar 

  11. Moriya T, Suzuki T, Pilichowska M, Ariga N, Kimura N, Ouchi N, Nagura H, Sasano H (2001) Immunohistochemical expression of gonadotropin releasing hormone receptor in human breast carcinoma. Pathol Int 51(5):333–337. https://doi.org/10.1046/j.1440-1827.2001.01210.x

    Article  CAS  PubMed  Google Scholar 

  12. Mangia A, Tommasi S, Reshkin SJ, Simone G, Stea B, Schittulli F, Paradiso A (2002) Gonadotropin releasing hormone receptor expression in primary breast cancer: comparison of immunohistochemical, radioligand and Western blot analyses. Oncol Rep 9(5):1127–1132

    CAS  PubMed  Google Scholar 

  13. Grundker C, Bauerschmitz G, Schubert A, Emons G (2016) Invasion and increased expression of S100A4 and CYR61 in mesenchymal transformed breast cancer cells is downregulated by GnRH. Int J Oncol 48(6):2713–2721. https://doi.org/10.3892/ijo.2016.3491

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374. https://doi.org/10.1158/1078-0432.CCR-04-0220

    Article  CAS  Google Scholar 

  15. Kim MJ, Ro JY, Ahn SH, Kim HH, Kim SB, Gong G (2006) Clinicopathologic significance of the basal-like subtype of breast cancer: a comparison with hormone receptor and Her2/neu-overexpressing phenotypes. Hum Pathol 37(9):1217–1226. https://doi.org/10.1016/j.humpath.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  16. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9):1721–1728. https://doi.org/10.1002/cncr.22618

    Article  PubMed  Google Scholar 

  17. Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13(4):1033–1067. https://doi.org/10.1677/ERC-06-0001

    Article  CAS  PubMed  Google Scholar 

  18. von Alten J, Fister S, Schulz H, Viereck V, Frosch KH, Emons G, Grundker C (2006) GnRH analogs reduce invasiveness of human breast cancer cells. Breast Cancer Res Treat 100(1):13–21. https://doi.org/10.1007/s10549-006-9222-z

    Article  CAS  Google Scholar 

  19. Schubert A, Hawighorst T, Emons G, Grundker C (2011) Agonists and antagonists of GnRH-I and -II reduce metastasis formation by triple-negative human breast cancer cells in vivo. Breast Cancer Res Treat 130(3):783–790. https://doi.org/10.1007/s10549-011-1358-9

    Article  CAS  PubMed  Google Scholar 

  20. Wu HM, Wang HS, Huang HY, Soong YK, MacCalman CD, Leung PC (2009) GnRH signaling in intrauterine tissues. Reproduction 137(5):769–777. https://doi.org/10.1530/REP-08-0397

    Article  CAS  PubMed  Google Scholar 

  21. Hsueh AJ, Jones PB (1981) Extrapituitary actions of gonadotropin-releasing hormone. Endocr Rev 2(4):437–461. https://doi.org/10.1210/edrv-2-4-437

    Article  CAS  PubMed  Google Scholar 

  22. Cummins PM, O'Connor B (1998) Pyroglutamyl peptidase: an overview of the three known enzymatic forms. Biochem Biophys Acta 1429(1):1–17. https://doi.org/10.1016/s0167-4838(98)00248-9

    Article  CAS  PubMed  Google Scholar 

  23. Beynon RBJ (2001) Proteolytic enzymes. Oxford University Press, New York

    Google Scholar 

  24. Carrera MP, Ramirez-Exposito MJ, Valenzuela MT, Garcia MJ, Mayas MD, Martinez-Martos JM (2003) Serum pyrrolidone carboxypeptidase activity in N-methyl-nitrosourea induced rat breast cancer. Horm Metab Res 5(8):502–505. https://doi.org/10.1055/s-2003-41809

    Article  Google Scholar 

  25. Martinez JM, Ramirez MJ, Prieto I, Petzelt C, Hermoso F, Alba F, Arias Saavedra JM, Ramirez M (1999) Human serum pyroglutamyl-beta-naphthylamide hydrolyzing activity during development and aging. Arch Gerontol Geriatr 28(1):31–36. https://doi.org/10.1016/s0167-4943(98)00123-x

    Article  CAS  PubMed  Google Scholar 

  26. Carrera-Gonzalez Mdel P, Ramirez-Exposito MJ, Duenas B, Martinez-Ferrol J, Mayas MD, Martinez-Martos JM (2012) Putative relationship between hormonal status and serum pyrrolidone carboxypeptidase activity in pre- and post- menopausal women with breast cancer. Breast 21(6):751–754. https://doi.org/10.1016/j.breast.2012.02.001

    Article  PubMed  Google Scholar 

  27. Ziegler RG, Fuhrman BJ, Moore SC, Matthews CE (2015) Epidemiologic studies of estrogen metabolism and breast cancer. Steroids 99(Pt A):67–75. https://doi.org/10.1016/j.steroids.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, Stanczyk FZ, Stephenson HE Jr, Falk RT, Miller R, Schatzkin A, Allen DS, Fentiman IS, Key TJ, Wang DY, Dowsett M, Thomas HV, Hankinson SE, Toniolo P, Akhmedkhanov A, Koenig K, Shore RE, Zeleniuch-Jacquotte A, Berrino F, Muti P, Micheli A, Krogh V, Sieri S, Pala V, Venturelli E, Secreto G, Barrett-Connor E, Laughlin GA, Kabuto M, Akiba S, Stevens RG, Neriishi K, Land CE, Cauley JA, Kuller LH, Cummings SR, Helzlsouer KJ, Alberg AJ, Bush TL, Comstock GW, Gordon GB, Miller SR, Longcope C, Collaborative EHBC, G, (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 95(16):1218–1226. https://doi.org/10.1093/jnci/djg022

    Article  CAS  PubMed  Google Scholar 

  29. Misso ML, Jang C, Adams J, Tran J, Murata Y, Bell R, Boon WC, Simpson ER, Davis SR (2005) Adipose aromatase gene expression is greater in older women and is unaffected by postmenopausal estrogen therapy. Menopause 12(2):210–215. https://doi.org/10.1097/00042192-200512020-00016

    Article  PubMed  Google Scholar 

  30. McTiernan A, Wu L, Chen C, Chlebowski R, Mossavar-Rahmani Y, Modugno F, Perri MG, Stanczyk FZ, Van Horn L, Wang CY, Women's Health Initiative I (2006) Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity 14(9):1662–1677. https://doi.org/10.1038/oby.2006.191

    Article  CAS  PubMed  Google Scholar 

  31. Brown KA, Simpson ER (2012) Obesity and breast cancer: mechanisms and therapeutic implications. Front Biosci 4:2515–2524. https://doi.org/10.2741/e562

    Article  Google Scholar 

  32. Brown KA, Iyengar NM, Zhou XK, Gucalp A, Subbaramaiah K, Wang H, Giri DD, Morrow M, Falcone DJ, Wendel NK, Winston LA, Pollak M, Dierickx A, Hudis CA, Dannenberg AJ (2017) Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J Clin Endocrinol Metabol 102(5):1692–1701. https://doi.org/10.1210/jc.2016-3606

    Article  Google Scholar 

  33. Martinez-Martos JM, del Pilar C-G, Duenas B, Mayas MD, Garcia MJ, Ramirez-Exposito MJ (2011) Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer. Breast 20(5):444–447. https://doi.org/10.1016/j.breast.2011.04.008

    Article  PubMed  Google Scholar 

  34. Vinson GP, Barker S, Puddefoot JR (2012) The renin-angiotensin system in the breast and breast cancer. Endocr Relat Cancer 19(1):R1–19. https://doi.org/10.1530/ERC-11-0335

    Article  CAS  PubMed  Google Scholar 

  35. Martinez JM, Prieto I, Ramirez MJ, Cueva C, Alba F, Ramirez M (1999) Aminopeptidase activities in breast cancer tissue. Clin Chem 45(10):1797–1802

    Article  CAS  PubMed  Google Scholar 

  36. Geyer FC, Rodrigues DN, Weigelt B, Reis-Filho JS (2012) Molecular classification of estrogen receptor-positive/luminal breast cancers. Adv Anat Pathol 19(1):39–53. https://doi.org/10.1097/PAP.0b013e31823fafa0

    Article  CAS  PubMed  Google Scholar 

  37. Huang B, Warner M, Gustafsson JA (2015) Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol 418(Pt 3):240–244. https://doi.org/10.1016/j.mce.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  38. Reznikov A (2015) Hormonal impact on tumor growth and progression. Exp Oncol 37(3):162–172

    Article  CAS  PubMed  Google Scholar 

  39. Thomas HV, Reeves GK, Key TJ (1997) Endogenous estrogen and postmenopausal breast cancer: a quantitative review. Cancer Causes Control 8(6):922–928. https://doi.org/10.1023/a:1018476631561

    Article  CAS  PubMed  Google Scholar 

  40. Dorgan JF, Longcope C, Stephenson HE Jr, Falk RT, Miller R, Franz C, Kahle L, Campbell WS, Tangrea JA, Schatzkin A (1996) Relation of prediagnostic serum estrogen and androgen levels to breast cancer risk. Cancer Epidemiol Biomark Prev 5(7):533–539

    CAS  Google Scholar 

  41. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230. https://doi.org/10.1016/s0960-0760(03)00360-1

    Article  CAS  PubMed  Google Scholar 

  42. Simpson ER (2004) Aromatase: biologic relevance of tissue-specific expression. Semin Reproduct Med 22(1):11–23. https://doi.org/10.1055/s-2004-823023

    Article  CAS  Google Scholar 

  43. Boon WC, Chow JD, Simpson ER (2010) The multiple roles of estrogens and the enzyme aromatase. Prog Brain Res 181:209–232. https://doi.org/10.1016/S0079-6123(08)81012-6

    Article  CAS  PubMed  Google Scholar 

  44. Consultation WHOE (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163. https://doi.org/10.1016/S0140-6736(03)15268-3

    Article  Google Scholar 

  45. Maughan KL, Lutterbie MA, Ham PS (2010) Treatment of breast cancer. Am Fam Physician 81(11):1339–1346

    PubMed  Google Scholar 

  46. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19(2):264–271. https://doi.org/10.1038/modpathol.3800528

    Article  CAS  Google Scholar 

  47. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434. https://doi.org/10.1158/1078-0432.CCR-06-3045

    Article  PubMed  Google Scholar 

  48. Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9(5):R65. https://doi.org/10.1186/bcr1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parise CA, Bauer KR, Brown MM, Caggiano V (2009) Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J 15(6):593–602. https://doi.org/10.1111/j.1524-4741.2009.00822.x

    Article  PubMed  Google Scholar 

  50. Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7(12):683–692. https://doi.org/10.1038/nrclinonc.2010.154

    Article  PubMed  Google Scholar 

  51. Fost C, Duwe F, Hellriegel M, Schweyer S, Emons G, Grundker C (2011) Targeted chemotherapy for triple-negative breast cancers via LHRH receptor. Oncol Rep 25(5):1481–1487. https://doi.org/10.3892/or.2011.1188

    Article  CAS  PubMed  Google Scholar 

  52. Buchholz S, Seitz S, Schally AV, Engel JB, Rick FG, Szalontay L, Hohla F, Krishan A, Papadia A, Gaiser T, Brockhoff G, Ortmann O, Diedrich K, Koster F (2009) Triple-negative breast cancers express receptors for luteinizing hormone-releasing hormone (LHRH) and respond to LHRH antagonist cetrorelix with growth inhibition. Int J Oncol 35(4):789–796. https://doi.org/10.3892/ijo_00000391

    Article  CAS  PubMed  Google Scholar 

  53. Limonta P, Dondi D, Moretti RM, Maggi R, Motta M (1992) Antiproliferative effects of luteinizing hormone-releasing hormone agonists on the human prostatic cancer cell line LNCaP. J Clin Endocrinol Metabol 75(1):207–212. https://doi.org/10.1210/jcem.75.1.1320049

    Article  CAS  Google Scholar 

  54. Dondi D, Limonta P, Moretti RM, Marelli MM, Garattini E, Motta M (1994) Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU 145: evidence for an autocrine-inhibitory LHRH loop. Can Res 54(15):4091–4095

    CAS  Google Scholar 

  55. Limonta P, Moretti RM, Dondi D, Marelli MM, Motta M (1994) Androgen-dependent prostatic tumors: biosynthesis and possible actions of LHRH. J Steroid Biochem Molr Biol 49(4–6):347–350. https://doi.org/10.1016/0960-0760(94)90278-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Consejería de Salud de la Junta de Andalucía (Grant SAS-PI0253) and Plan Propio de la Universidad de Jaén (Grants UJA2016/08/04 and PAIUJA 2017/00319/001). The authors would like to thank Nutraceutical Translations for English language editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pilar Carrera-González.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Expósito, M.J., Martínez-Martos, J.M., Dueñas-Rodríguez, B. et al. Neoadjuvant chemotherapy modifies serum pyrrolidone carboxypeptidase specific activity in women with breast cancer and influences circulating levels of GnRH and gonadotropins. Breast Cancer Res Treat 182, 751–760 (2020). https://doi.org/10.1007/s10549-020-05723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05723-1

Keywords

Navigation