Skip to main content

Advertisement

Log in

Value of CXCL8–CXCR1/2 axis in neoadjuvant chemotherapy for triple-negative breast cancer patients: a retrospective pilot study

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

In this study we investigate the prediction and prognostic value of CXCL8–CXCR1/2 axis for Triple-negative breast cancer (TNBC) patients underwent neoadjuvant chemotherapy (NAC) following standard radical surgery.

Methods

A total of 303 TNBC patients were included in this study. The NAC regimen was weekly paclitaxel plus carboplatin (PC) for all patients. Serum CXCL8 level was measured at baseline and at surgery via Enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry was used to detect CXCR1 and CXCR2 expression in patients with residual tumors after NAC. Correlations between variables and treatment response were studied, and Cox proportional hazards regression analysis was implemented for prognostic evaluation.

Results

Of the 303 patients, 103 (34.0%) patients experienced pathological complete response (pCR) after completion of NAC. CXCL8 level was significantly upgraded after NAC in CXCR1/2+ patients and downgraded after NAC in CXCR1/2− patients. Higher pCR rate was more likely observed in patients with lower CXCL8 level at surgery (P = 0.004, HR 0.939, 95% CI 0.900–0.980). In the multivariate survival model, CXCR1/2 expression was of an independent prognostic value for survival (CXCR1/2+, HR 2.149, 95% CI 0.933–4.949; CXCR1/2++, HR 3.466, 95% CI 1.569–7.655, CXCR1/2− was used as a reference; P = 0.003). Patients with higher level of CXCR1/2 expression were more likely to suffer unfavorable outcome.

Conclusions

This study contributes to the clarification of the value of serum CXCL8 level to predict pCR for TNBC patients, and prognostic performance of CXCR1/2 in non-pCR responders after NAC. The CXCL8–CXCR1/2 might play an important role in tailoring and modifying the NAC strategy for advanced TNBCs; however, further confirmatory studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The dataset supporting the conclusions of this article is included within the article.

References

  1. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109(9):1721–1728

    Article  PubMed  Google Scholar 

  2. Kong X, Moran MS, Zhang N, Haffty B, Yang Q (2011) Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur J Cancer 47(14):2084–2090

    Article  PubMed  Google Scholar 

  3. Prowell TM, Pazdur R (2012) Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 366(26):2438–2441

    Article  CAS  PubMed  Google Scholar 

  4. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121(7):2750–2767

    Article  CAS  PubMed  Google Scholar 

  5. Jiang YZ, Ma D, Suo C, Shi J, Xue M, Hu X, Xiao Y, Yu KD, Liu YR, Yu Y et al (2019) Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell 35(3):428–440

    Article  CAS  PubMed  Google Scholar 

  6. Xie K (2001) Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 12(4):375–391

    Article  CAS  PubMed  Google Scholar 

  7. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741

    Article  CAS  PubMed  Google Scholar 

  8. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun H, Chung WC, Ryu SH, Ju Z, Tran HT, Kim E, Kurie JM, Koo JS (2008) Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res (Phila) 1(5):316–328

    Article  CAS  Google Scholar 

  10. Erreni M, Bianchi P, Laghi L, Mirolo M, Fabbri M, Locati M, Mantovani A, Allavena P (2009) Expression of chemokines and chemokine receptors in human colon cancer. Methods Enzymol 460:105–121

    Article  CAS  PubMed  Google Scholar 

  11. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE et al (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahmed OI, Adel AM, Diab DR, Gobran NS (2006) Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients. Egypt J Immunol 13(2):61–68

    PubMed  Google Scholar 

  13. Ghoneim HM, Maher S, Abdel-Aty A, Saad A, Kazem A, Demian SR (2009) Tumor-derived CCL-2 and CXCL-8 as possible prognostic markers of breast cancer: correlation with estrogen and progestrone receptor phenotyping. Egypt J Immunol 16(2):37–48

    CAS  PubMed  Google Scholar 

  14. Milovanovic J, Todorovic-Rakovic N, Radulovic M (2019) Interleukin-6 and interleukin-8 serum levels in prognosis of hormone-dependent breast cancer. Cytokine 118:93–98

    Article  CAS  PubMed  Google Scholar 

  15. Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB et al (2013) Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73(11):3470–3480

    Article  CAS  PubMed  Google Scholar 

  16. Shi Z, Yang WM, Chen LP, Yang DH, Zhou Q, Zhu J, Chen JJ, Huang RC, Chen ZS, Huang RP (2012) Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res Treat 135(3):737–747

    Article  CAS  PubMed  Google Scholar 

  17. Chen XS, Nie XQ, Chen CM, Wu JY, Wu J, Lu JS, Shao ZM, Shen ZZ, Shen KW (2010) Weekly paclitaxel plus carboplatin is an effective nonanthracycline-containing regimen as neoadjuvant chemotherapy for breast cancer. Ann Oncol 21(5):961–967

    Article  CAS  PubMed  Google Scholar 

  18. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  19. Wang RX, Chen S, Huang L, Shao ZM (2018) Predictive and prognostic value of Matrix metalloproteinase (MMP)—9 in neoadjuvant chemotherapy for triple-negative breast cancer patients. BMC Cancer 18(1):909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fasching PA, Gass P, Hein A (2016) Neoadjuvant treatment of breast cancer—advances and limitations. Breast Care 11(5):313–314

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tan W, Yang M, Yang H, Zhou F, Shen W (2018) Predicting the response to neoadjuvant therapy for early-stage breast cancer: tumor-, blood-, and imaging-related biomarkers. Cancer Manag Res 10:4333–4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yankeelov TE, Atuegwu N, Hormuth D, Weis JA, Barnes SL, Miga MI, Rericha EC, Quaranta V (2013) Clinically relevant modeling of tumor growth and treatment response. Sci Transl Med 5(187):187–189

    Article  CAS  Google Scholar 

  23. Weis JA, Miga MI, Arlinghaus LR, Li X, Abramson V, Chakravarthy AB, Pendyala P, Yankeelov TE (2015) Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction-diffusion model. Cancer Res 75(22):4697–4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veltri RW, Miller MC, Zhao G, Ng A, Marley GM, Wright GL Jr, Vessella RL, Ralph D (1999) Interleukin-8 serum levels in patients with benign prostatic hyperplasia and prostate cancer. Urology 53(1):139–147

    Article  CAS  PubMed  Google Scholar 

  26. Samie A, Dzhivhuho GA, Nangammbi TC (2014) Distribution of CXCR2 +1208 T/C gene polymorphisms in relation to opportunistic infections among HIV-infected patients in Limpopo Province, South Africa. Genet Mol Res 13(3):7470–7479

    Article  CAS  PubMed  Google Scholar 

  27. Wilson C, Purcell C, Seaton A, Oladipo O, Maxwell PJ, O'Sullivan JM, Wilson RH, Johnston PG, Waugh DJ (2008) Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis. J Pharmacol Exp Ther 327(3):746–759

    Article  CAS  PubMed  Google Scholar 

  28. Wilson C, Maxwell PJ, Longley DB, Wilson RH, Johnston PG, Waugh DJ (2012) Constitutive and treatment-induced CXCL8-signalling selectively modulates the efficacy of anti-metabolite therapeutics in metastatic prostate cancer. PLoS ONE 7(5):e36545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song Y, Baba T, Li YY, Furukawa K, Tanabe Y, Matsugo S, Sasaki S, Mukaida N (2015) Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization. Biochem Biophys Res Commun 458(2):341–346

    Article  CAS  PubMed  Google Scholar 

  30. Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Nagulapalli Venkata KC et al (2012) The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther 11(6):1353–1364

    Article  CAS  PubMed  Google Scholar 

  31. Singh JK, Farnie G, Bundred NJ, Simoes BM, Shergill A, Landberg G, Howell SJ, Clarke RB (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res 19(3):643–656

    Article  CAS  PubMed  Google Scholar 

  32. Sanmamed MF, Carranza-Rua O, Alfaro C, Onate C, Martin-Algarra S, Perez G, Landazuri SF, Gonzalez A, Gross S, Rodriguez I et al (2014) Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin Cancer Res 20(22):5697–5707

    Article  CAS  PubMed  Google Scholar 

  33. Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S, East-Seletsky A, Ali LD, Gerath WF, Pantel SE et al (2014) Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data 1:140035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otvos B, Silver DJ, Mulkearns-Hubert EE, Alvarado AG, Turaga SM, Sorensen MD, Rayman P, Flavahan WA, Hale JS, Stoltz K et al (2016) Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 34(8):2026–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN, Mackall CL (2014) Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 6(237):237–267

    Article  CAS  Google Scholar 

  36. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Investig 120(2):485–497

    Article  CAS  PubMed  Google Scholar 

  37. Jung JH, Lee SJ, Kim J, Lee S, Sung HJ, An J, Park Y, Kim BS (2015) CXCR2 and its related ligands play a novel role in supporting the pluripotency and proliferation of human pluripotent stem cells. Stem Cells Dev 24(8):948–961

    Article  CAS  PubMed  Google Scholar 

  38. Brandolini L, Cristiano L, Fidoamore A, De Pizzol M, Di Giacomo E, Florio TM, Confalone G, Galante A, Cinque B, Benedetti E et al (2015) Targeting CXCR1 on breast cancer stem cells: signaling pathways and clinical application modelling. Oncotarget 6(41):43375–43394

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, Perez RP, Kato G, Wicha M (2017) Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res 23(18):5358–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Yin Zhou, Guang-Yu Liu and Can-Ming Chen for their excellent data management.

Funding

This research was supported by the National Natural Science Foundation of China (81872134), Natural Science Foundation of Shanghai (17ZR1405900), Research Foundation of Shanghai Municipal Commission of Health and Family Planning (20164Y0200), Project of Excellent Youth of Shanghai Municipal Commission of Health and Family Planning (2018YQ42), and Shanghai Sailing Program (18YF1405000). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

WRX and CS contributed to the conception of the study, data analysis and interpretation, and writing the manuscript. JP and GY made tissue sections and participated in ELISA and immunohistochemical analysis. CS and SZM contributed to the collection and assembly of data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sheng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Our study was approved by the independent ethical committee/institutional review board of Fudan University Shanghai Cancer Center (Shanghai Cancer Center Ethical Committee). All patients gave their written informed consent before inclusion in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RX., Ji, P., Gong, Y. et al. Value of CXCL8–CXCR1/2 axis in neoadjuvant chemotherapy for triple-negative breast cancer patients: a retrospective pilot study. Breast Cancer Res Treat 181, 561–570 (2020). https://doi.org/10.1007/s10549-020-05660-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05660-z

Keywords

Navigation