Skip to main content

Advertisement

Log in

MST1R (RON) expression is a novel prognostic biomarker for metastatic progression in breast cancer patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

This study evaluates the prognostic significance of MST1R (RON) expression in breast cancer with respect to disease progression, long-term survival, subtype, and association with conventional prognostic factors.

Methods

The approach includes interrogation of survival and tumor staging with paired MST1R RNA expression from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Protein expression evaluation was performed using immunohistochemistry (IHC) staining of MST1R on breast cancer tissue samples from the Cancer Diagnosis Program Breast Cancer Progression tissue microarray and locally obtained breast tumor tissue samples analyzed with paired survival, metastasis, and subtype.

Results

Data from TCGA (n = 774) show poorer relapse-free survival (RFS) in patients with high MST1R expression (P = 0.32) and no difference in MST1R expression based on tumor stage (P = 0.77) or nodal status (P = 0.94). Patients in the GEO-derived Kaplan–Meier Plotter microarray dataset demonstrate the association of MST1R and poorer overall survival (n = 1402, P = 0.018) and RFS in patients receiving chemotherapy (n = 798, P = 0.041). Patients with high MST1R expression display worse overall survival (P = 0.01) and receiver operator characteristic (ROC) analysis demonstrate the predictive capacity of increased MST1R with early death (P = 0.0017) in IHC-stained samples. Paired IHC-stained breast tumor samples from the primary versus metastatic site show MST1R expression is associated with metastatic progression (P = 0.032), and ROC analysis supports the predictive capacity of MST1R in metastatic progression (P = 0.031). No associations of MST1R with estrogen receptor (ER), progesterone receptor (PR), both ER and PR, HER2 positivity, or triple-negativity were found (P = 0.386, P = 0.766, P = 0.746, P = 0.457, P = 0.947, respectively).

Conclusions

MST1R expression has prognostic value in breast cancer with respect to survival and metastatic progression. MST1R expression is not associated with tumor stage, nodal status, or subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ACS (2017) Breast Cancer Facts & Figures 2017–2018

  2. ACS (2019) Cancer Facts & Figures

  3. van Maaren MC, de Munck L, Strobbe LJA, Sonke GS, Westenend PJ, Smidt ML, Poortmans PMP, Siesling S (2019) Ten-year recurrence rates for breast cancer subtypes in the Netherlands: A large population-based study. Int J Cancer 144(2):263–272. https://doi.org/10.1002/ijc.31914

    Article  CAS  PubMed  Google Scholar 

  4. Paci E, Duffy S (2005) Overdiagnosis and overtreatment of breast cancer: overdiagnosis and overtreatment in service screening. Breast Cancer Res 7(6):266–270. https://doi.org/10.1186/bcr1339

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schmidt M (2008) Node-Negative Breast Cancer: Which Patients Should Be Treated? Breast Care (Basel) 3(4):237–243. https://doi.org/10.1159/000149357

    Article  Google Scholar 

  6. Sparano JA, Gray RJ, Ravdin PM, Makower DF, Pritchard KI, Albain KS, Hayes DF, Geyer JC, Dees EC, Goetz MP (2019) Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. N Engl J Med 380:2395–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Esteban J, Baker J, Cronin M, Liu M, Llamas M, Walker M, Mena R, Shak S (2003) Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. SienceOpen, Burlington

    Google Scholar 

  8. Wagh PK, Peace BE, Waltz SE (2008) Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. Adv Cancer Res 100:1–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benight NM, Waltz SE (2012) Ron receptor tyrosine kinase signaling as a therapeutic target. Expert Opin Ther Targets 16(9):921–931. https://doi.org/10.1517/14728222.2012.710200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leonis MA, Thobe MN, Waltz SE (2007) Ron-receptor tyrosine kinase in tumorigenesis and metastasis. Future Oncol 3(4):441–448. https://doi.org/10.2217/14796694.3.4.441

    Article  CAS  PubMed  Google Scholar 

  11. Gurusamy D, Gray JK, Pathrose P, Kulkarni RM, Finkleman FD, Waltz SE (2013) Myeloid-specific expression of ron receptor kinase promotes prostate tumor growth. Cancer Res 73(6):1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Welm AL, Sneddon JB, Taylor C, Nuyten DSA, Van De Vijver MJ, Hasegawa BH, Bishop JM (2007) The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc Natl Acad Sci 104(18):7570–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babicky ML, Harper MM, Chakedis J, Cazes A, Mose ES, Jaquish DV, French RP, Childers B, Alakus H, Schmid MC, Foubert P, Miyamoto J, Holman PJ, Walterscheid ZJ, Tang C-M, Varki N, Sicklick JK, Messer K, Varner JA, Waltz SE, Lowy AM (2019) MST1R kinase accelerates pancreatic cancer progression via effects on both epithelial cells and macrophages. Oncogene 38(28):5599–5611. https://doi.org/10.1038/s41388-019-0811-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE (2018) Tumor cell autonomous RON receptor expression promotes prostate cancer growth under conditions of androgen deprivation. Neoplasia 20(9):917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruiz-Torres SJ, Benight NM, Karns RA, Lower EE, Guan J-L, Waltz SE (2017) HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical β-catenin signaling. Oncotarget. https://doi.org/10.18632/oncotarget.19441

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wagh PK, Gray JK, Zinser GM, Vasiliauskas J, James L, Monga SP, Waltz SE (2011) β-Catenin is required for Ron receptor-induced mammary tumorigenesis. Oncogene 30(34):3694–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wagh PK, Zinser GM, Gray JK, Shrestha A, Waltz SE (2012) Conditional deletion of β-catenin in mammary epithelial cells of Ron receptor, Mst1r, overexpressing mice alters mammary tumorigenesis. Endocrinology 153(6):2735–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Logan-Collins J, Thomas RM, Yu P, Jaquish D, Mose E, French R, Stuart W, McClaine R, Aronow B, Hoffman RM (2010) Silencing of RON receptor signaling promotes apoptosis and gemcitabine sensitivity in pancreatic cancers. Cancer Res 70:1130–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas RM, Toney K, Fenoglio-Preiser C, Revelo-Penafiel MP, Hingorani SR, Tuveson DA, Waltz SE, Lowy AM (2007) The RON receptor tyrosine kinase mediates oncogenic phenotypes in pancreatic cancer cells and is increasingly expressed during pancreatic cancer progression. Cancer Res 67(13):6075–6082. https://doi.org/10.1158/0008-5472.CAN-06-4128

    Article  CAS  PubMed  Google Scholar 

  20. Zinser GM, Leonis MA, Toney K, Pathrose P, Thobe M, Kader SA, Peace BE, Beauman SR, Collins MH, Waltz SE (2006) Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with β-catenin activation. Cancer Res 66(24):11967–11974

    Article  CAS  PubMed  Google Scholar 

  21. Maggiora P, Marchio S, Stella MC, Giai M, Belfiore A, De Bortoli M, Di Renzo MF, Costantino A, Sismondi P, Comoglio PM (1998) Overexpression of the RON gene in human breast carcinoma. Oncogene 16:2927–2933

    Article  CAS  PubMed  Google Scholar 

  22. Kretschmann KL, Eyob H, Buys SS, Welm AL (2010) The macrophage stimulating protein/Ron pathway as a potential therapeutic target to impede multiple mechanisms involved in breast cancer progression. Curr Drug Targets 11(9):1157–1168. https://doi.org/10.2174/138945010792006825

    Article  CAS  PubMed  Google Scholar 

  23. Marshall AM, McClaine RJ, Gurusamy D, Gray JK, Lewnard KE, Khan SA, Waltz SE (2012) Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice. Mol Cancer 11(1):2. https://doi.org/10.1186/1476-4598-11-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee W-Y, Chen HHW, Chow N-H, Su W-C, Lin P-W, Guo H-R (2005) Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clin Cancer Res 11(6):2222–2228

    Article  CAS  PubMed  Google Scholar 

  25. Andrade K, Fornetti J, Zhao L, Miller SC, Randall RL, Anderson N, Waltz SE, McHale M, Welm AL (2017) RON kinase: A target for treatment of cancer-induced bone destruction and osteoporosis. Sci Transl Med 9(374):eaai9338

    Article  PubMed  PubMed Central  Google Scholar 

  26. Benight NM, Wagh PK, Zinser GM, Peace BE, Stuart WD, Vasiliauskas J, Pathrose P, Starnes SL, Waltz SE (2015) HGFL supports mammary tumorigenesis by enhancing tumor cell intrinsic survival and influencing macrophage and T-cell responses. Oncotarget 6(19):17445

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eyob H, Ekiz HA, DeRose YS, Waltz SE, Williams MA, Welm AL (2013) Inhibition of Ron kinase blocks conversion of micrometastases to overt metastases by boosting anti-tumor immunity. Cancer Discov 3:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McClaine RJ, Marshall AM, Wagh PK, Waltz SE (2010) Ron receptor tyrosine kinase activation confers resistance to tamoxifen in breast cancer cell lines. Neoplasia 12(8):650–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peace BE, Toney-Earley K, Collins MH, Waltz SE (2005) Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer. Cancer Res 65(4):1285–1293

    Article  CAS  PubMed  Google Scholar 

  30. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725–731

    Article  PubMed  Google Scholar 

  31. Otoole JM, Rabenau KE, Burns K, Lu D, Mangalampalli V, Balderes P, Covino N, Bassi R, Prewett M, Gottfredsen KJ (2006) Therapeutic implications of a human neutralizing antibody to the macrophage-stimulating protein receptor tyrosine kinase (RON), a c-MET family member. Cancer Res 66(18):9162–9170

    Article  CAS  Google Scholar 

  32. Thobe MN, Gurusamy D, Pathrose P, Waltz SE (2010) The Ron receptor tyrosine kinase positively regulates angiogenic chemokine production in prostate cancer cells. Oncogene 29(2):214

    Article  CAS  PubMed  Google Scholar 

  33. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. https://doi.org/10.1200/jco.2008.18.1370

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stapelkamp C, Holmberg L, Tataru D, Møller H, Robinson D (2011) Predictors of early death in female patients with breast cancer in the UK: a cohort study. BMJ Open 1(2):e000247–e000247. https://doi.org/10.1136/bmjopen-2011-000247

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu PP, Hoffman MA, Hayes DF (2015) Biomarkers and oncology: the path forward to a learning health system. Arch Pathol Lab Med 139(4):451–456. https://doi.org/10.5858/arpa.2014-0080-ED

    Article  PubMed  Google Scholar 

  36. McShane LM, Hayes DF (2012) Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol 30(34):4223

    Article  PubMed  PubMed Central  Google Scholar 

  37. Simon RM, Paik S, Hayes DF (2009) Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 101(21):1446–1452

    Article  PubMed  PubMed Central  Google Scholar 

  38. Altman DG, McShane LM, Sauerbrei W, Taube SE (2012) Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med 10(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  39. Omenn GS, Nass SJ, Micheel CM (2012) Evolution of translational omics: lessons learned and the path forward. National Academies Press, Washington, DC

    Google Scholar 

  40. Vargas AJ, Harris CC (2016) Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer 16(8):525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vinnedge LMP, Benight NM, Wagh PK, Pease NA, Nashu MA, Serrano-Lopez J, Adams AK, Cancelas JA, Waltz SE, Wells SI (2015) The DEK oncogene promotes cellular proliferation through paracrine Wnt signaling in Ron receptor-positive breast cancers. Oncogene 34(18):2325–2336. https://doi.org/10.1038/onc.2014.173

    Article  CAS  Google Scholar 

  42. McClaine RJ, Marshall AM, Wagh PK, Waltz SE (2010) Ron receptor tyrosine kinase activation confers resistance to tamoxifen in breast cancer cell lines. Neoplasia (New York, NY) 12(8):650–658. https://doi.org/10.1593/neo.10476

    Article  CAS  Google Scholar 

  43. Faham N, Zhao L, Welm AL (2018) mTORC1 is a key mediator of RON-dependent breast cancer metastasis with therapeutic potential. NPJ Breast Cancer 4:36–36. https://doi.org/10.1038/s41523-018-0091-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goossens N, Nakagawa S, Sun X, Hoshida Y (2015) Cancer biomarker discovery and validation. Transl Cancer Res 4(3):256

    CAS  PubMed  Google Scholar 

  45. Sun J-Y, Wu S-G, Li F-Y, Lin H-X, He Z-Y (2016) Progesterone receptor loss identifies hormone receptor-positive and HER2-negative breast cancer subgroups at higher risk of relapse: a retrospective cohort study. OncoTargets Ther 9:1707

    CAS  Google Scholar 

  46. Caldarella A, Barchielli A (2017) Prognostic role of progesterone receptor expression in a population-based analysis. J Cancer Res Clin Oncol 143(12):2505–2509

    Article  CAS  PubMed  Google Scholar 

  47. Wu N, Fu F, Chen L, Lin Y, Yang P, Wang C (2019) Single hormone receptor-positive breast cancer patients experienced poor survival outcomes: a systematic review and meta-analysis. Clin Transl Oncol 22:474–485

    Article  PubMed  Google Scholar 

  48. Boland M, Ryan É, Dunne E, Aherne T, Bhatt N, Lowery A (2019) Meta-analysis of the impact of progesterone receptor status on oncological outcomes in oestrogen receptor-positive breast cancer. Br J Surg 107:33–44

    Article  PubMed  Google Scholar 

  49. Wu S-G, Zhang W-W, Wang J, Lian C-L, Sun J-Y, Chen Y-X, He Z-Y (2019) Progesterone receptor status and tumor grade predict the 21-gene recurrence score of invasive lobular breast cancer. Biomark Med 13:1005–1012

    Article  CAS  PubMed  Google Scholar 

  50. Bae SY, Kim S, Lee JH, Lee H-c, Lee SK, Kil WH, Kim SW, Lee JE, Nam SJ (2015) Poor prognosis of single hormone receptor-positive breast cancer: similar outcome as triple-negative breast cancer. BMC Cancer 15(1):138. https://doi.org/10.1186/s12885-015-1121-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Phillip Dexheimer and Mario Pujato, PhD, for help with PAM50 gene clustering and subtype assignment. This study was funded by VA Merit Award 1IO1BX000803 (SEW), F31CA228373 (BGH), T32CA117846 (SEW and CAW), Marlene Harris Ride Cincinnati Awards (VT and SEW), and a Career Development Award from the Biomedical Laboratory Research and Development Service of the US Department of Veterans Affairs (IK2 BX004360)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Waltz.

Ethics declarations

Conflicts of interest

We declare that there are no potential conflicts of interest.

Ethical approval

Retrospective and archived sample studies presented herein comply with ethical standards implemented by the University of Cincinnati according to the specific requirements for human subjects testing in the United States.

Research involving Human Participants and/or Animals

Human participants: Samples obtained from human subjects were anonymized and de-identified prior to our acquisitionAnimals were not used in this study.

Informed consent

As is common practice at the University of Cincinnati and the Cooperative Human Tissue Network, Institutional Review Board (IRB) review took place and IRB protocol deemed unnecessary due to the anonymized and de-identified nature prior to acquisition of samples.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, B.G., Wicker, C.A., Bourn, J.R. et al. MST1R (RON) expression is a novel prognostic biomarker for metastatic progression in breast cancer patients. Breast Cancer Res Treat 181, 529–540 (2020). https://doi.org/10.1007/s10549-020-05653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05653-y

Keywords

Navigation