Skip to main content

Advertisement

Log in

Lymphovascular invasion in breast cancer is associated with gene expression signatures of cell proliferation but not lymphangiogenesis or immune response

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

While the prognostic relevance of lymphovascular invasion (LVI) in breast cancer is well known, its molecular biology is poorly understood. We hypothesized that pathologically determined LVI reflects molecular features of tumors and can be discerned from their genomic and transcriptomic profiles.

Methods

LVI status and Nottingham histological scores of primary breast tumors of The Cancer Genome Atlas (TCGA) project were assessed from pathology reports; other clinical and molecular data were obtained from TCGA data portals and publications. Two independent datasets (GSE5460 and GSE7849) were combined and used for validation.

Results

LVI status was determinable for 639 and 196 cases of the TCGA and validation cohorts, among whom LVI incidence was 37.8% and 37.2%, respectively. LVI was associated with high tumor Ki67 expression, advanced pathologic stage, and high Nottingham scores. LVI-positive cases had worse overall and progression-free survival regardless of cancer subtype. Surprisingly, in both cohorts, LVI was not associated with lymphangiogenesis or lymphatic vessel density as estimated from tumor expression of lymphatic endothelium-associated genes. LVI-positive tumors had higher genome copy number aberrations, aneuploidy, and homologous recombination defects, but not single-nucleotide variations or intra-tumor genome heterogeneity. Tumor immune cell composition and cytolytic activity was not associated with LVI status. On the other hand, expression of cell proliferation-related genes was significantly increased in LVI-positive tumors.

Conclusion

Our study suggests that breast cancer with LVI is a highly proliferative cancer, and it does not correlate with gene expression markers for lymphangiogenesis or immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The GEO datasets used in this study are available at https://www.ncbi.nlm.nih.gov/geo with accession numbers GSE5460 and GSE7849. Clinical, gene-level mapped read counts of RNA sequencing data, and MAF files of TCGA-BRCA cases are available at Genome Data Commons portal of National Cancer Institute, USA at https://gdc.cancer.gov. Information on Nottingham scores and LVI status that was collated from pathology reports of the TCGA cases is in Table S2. Other data used in this study is available from sources cited in the Materials and Methods section.

Abbreviations

CNA:

Copy number alteration

ER:

Estrogen receptor

GSEA:

Gene set enrichment analysis

GSVA:

Gene set variation analysis

HER2:

Human epidermal growth factor receptor 2

HRD:

Homologous recombination defect

LEC:

Lymphatic endothelial cell

LVD:

Lymphatic vessel density

LVI:

Lymphovascular invasion

PR:

Progesterone receptor

S1P:

Sphingosine-1-phosphate

SNV:

Single-nucleotide variation

TCGA:

The Cancer Genome Atlas

TIES:

Text Information Extraction System

TPM:

Transcripts per million

tSNE:

T-distributed stochastic neighbor embedding

References

  1. Ma Q, Dieterich LC, Detmar M (2018) Multiple roles of lymphatic vessels in tumor progression. Curr Opin Immunol 53:7–12. https://doi.org/10.1016/j.coi.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  2. Zhang S, Zhang D, Gong M, Wen L, Liao C, Zou L (2017) High lymphatic vessel density and presence of lymphovascular invasion both predict poor prognosis in breast cancer. BMC Cancer 17(1):335. https://doi.org/10.1186/s12885-017-3338-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rakha EA, Martin S, Lee AH, Morgan D, Pharoah PD, Hodi Z, Macmillan D, Ellis IO (2012) The prognostic significance of lymphovascular invasion in invasive breast carcinoma. Cancer 118(15):3670–3680. https://doi.org/10.1002/cncr.26711

    Article  PubMed  Google Scholar 

  4. Zhang ZQ, Han YZ, Nian Q, Chen G, Cui SQ, Wang XY (2015) Tumor invasiveness, not lymphangiogenesis, is correlated with lymph node metastasis and unfavorable prognosis in young breast cancer patients (%3c/=35 years). PLoS ONE 10(12):e0144376. https://doi.org/10.1371/journal.pone.0144376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang S, Zhang D, Yi S, Gong M, Lu C, Cai Y, Tang X, Zou L (2017) The relationship of lymphatic vessel density, lymphovascular invasion, and lymph node metastasis in breast cancer: a systematic review and meta-analysis. Oncotarget 8(2):2863–2873. https://doi.org/10.18632/oncotarget.13752

    Article  PubMed  Google Scholar 

  6. Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, Jackson DG, Yla-Herttuala S, Alitalo K (2001) Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 88(6):623–629

    Article  CAS  Google Scholar 

  7. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188(1):96–109. https://doi.org/10.1006/dbio.1997.8639

    Article  CAS  PubMed  Google Scholar 

  8. Du Y, Liu H, He Y, Liu Y, Yang C, Zhou M, Wang W, Cui L, Hu J, Gao F (2013) The interaction between LYVE-1 with hyaluronan on the cell surface may play a role in the diversity of adhesion to cancer cells. PLoS ONE 8(5):e63463. https://doi.org/10.1371/journal.pone.0063463

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nagahashi M, Ramachandran S, Rashid OM, Takabe K (2010) Lymphangiogenesis: a new player in cancer progression. World J Gastroenterol 16(32):4003–4012. https://doi.org/10.3748/wjg.v16.i32.4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. https://doi.org/10.1016/j.cell.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  11. Klahan S, Wong HS, Tu SH, Chou WH, Zhang YF, Ho TF, Liu CY, Yih SY, Lu HF, Chen SC, Huang CC, Chang WC (2017) Identification of genes and pathways related to lymphovascular invasion in breast cancer patients: a bioinformatics analysis of gene expression profiles. Tumour Biol 39(6):1010428317705573. https://doi.org/10.1177/1010428317705573

    Article  CAS  PubMed  Google Scholar 

  12. Paduch R (2016) The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordrecht) 39(5):397–410. https://doi.org/10.1007/s13402-016-0281-9

    Article  CAS  Google Scholar 

  13. Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T (2018) The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci 109(12):3671–3678. https://doi.org/10.1111/cas.13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsuchida J, Nagahashi M, Nakajima M, Moro K, Tatsuda K, Ramanathan R, Takabe K, Wakai T (2016) Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis. J Surg Res 205(1):85–94. https://doi.org/10.1016/j.jss.2016.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobson RS, Becich MJ, Bollag RJ, Chavan G, Corrigan J, Dhir R, Feldman MD, Gaudioso C, Legowski E, Maihle NJ, Mitchell K, Murphy M, Sakthivel M, Tseytlin E, Weaver J (2015) A federated network for translational cancer research using clinical data and biospecimens. Cancer Res 75(24):5194–5201. https://doi.org/10.1158/0008-5472.Can-15-1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V, Hu H, Cancer Genome Atlas Research N (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2):400–416. https://doi.org/10.1016/j.cell.2018.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  18. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CE, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich L, Cancer Genome Atlas Research N (2018) The immune landscape of cancer. Immunity 48(4):812–830. https://doi.org/10.1016/j.immuni.2018.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotti KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L, Group MCW, Cancer Genome Atlas Research N (2018) Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst 6(3):271–281. https://doi.org/10.1016/j.cels.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlson J, Li JZ, Zollner S (2018) Helmsman: fast and efficient mutation signature analysis for massive sequencing datasets. BMC Genomics 19(1):845. https://doi.org/10.1186/s12864-018-5264-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C (2016) DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol 17:31. https://doi.org/10.1186/s13059-016-0893-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA (2018) Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 1711:243–259. https://doi.org/10.1007/978-1-4939-7493-1_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61. https://doi.org/10.1016/j.cell.2014.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu X, Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL (2008) Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 108(2):191–201. https://doi.org/10.1007/s10549-007-9596-6

    Article  CAS  PubMed  Google Scholar 

  25. Anders CK, Acharya CR, Hsu DS, Broadwater G, Garman K, Foekens JA, Zhang Y, Wang Y, Marcom K, Marks JR, Mukherjee S, Nevins JR, Blackwell KL, Potti A (2008) Age-specific differences in oncogenic pathway deregulation seen in human breast tumors. PLoS ONE 3(1):e1373. https://doi.org/10.1371/journal.pone.0001373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England) 28(6):882–883. https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  Google Scholar 

  27. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99(25):16069–16074. https://doi.org/10.1073/pnas.242401399

    Article  CAS  PubMed  Google Scholar 

  28. Wick N, Saharinen P, Saharinen J, Gurnhofer E, Steiner CW, Raab I, Stokic D, Giovanoli P, Buchsbaum S, Burchard A, Thurner S, Alitalo K, Kerjaschki D (2007) Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro. Physiol Genomics 28(2):179–192. https://doi.org/10.1152/physiolgenomics.00037.2006

    Article  CAS  PubMed  Google Scholar 

  29. Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586. https://doi.org/10.1016/S0002-9440(10)63851-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amatschek S, Kriehuber E, Bauer W, Reininger B, Meraner P, Wolpl A, Schweifer N, Haslinger C, Stingl G, Maurer D (2007) Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood 109(11):4777–4785. https://doi.org/10.1182/blood-2006-10-053280

    Article  CAS  PubMed  Google Scholar 

  31. DiMaio TA, Wentz BL, Lagunoff M (2016) Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp Cell Res 340(1):159–169. https://doi.org/10.1016/j.yexcr.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  32. Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla-Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 21(17):4593–4599

    Article  CAS  Google Scholar 

  33. Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220. https://doi.org/10.1186/s13059-017-1349-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  Google Scholar 

  35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  Google Scholar 

  36. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D'Eustachio P (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655. https://doi.org/10.1093/nar/gkx1132

    Article  CAS  PubMed  Google Scholar 

  38. Smyth G (2005) Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Dudoit S, Irizarry RA (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  39. Ryu YJ, Kang SJ, Cho JS, Yoon JH, Park MH (2018) Lymphovascular invasion can be better than pathologic complete response to predict prognosis in breast cancer treated with neoadjuvant chemotherapy. Medicine 97(30):e11647. https://doi.org/10.1097/md.0000000000011647

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rakha EA, Abbas A, Pinto Ahumada P, ElSayed ME, Colman D, Pinder SE, Ellis IO (2018) Diagnostic concordance of reporting lymphovascular invasion in breast cancer. J Clin Pathol 71(9):802–805. https://doi.org/10.1136/jclinpath-2017-204981

    Article  PubMed  Google Scholar 

  41. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3):196–207. https://doi.org/10.1038/nrm2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee AH, Pinder SE, Macmillan RD, Mitchell M, Ellis IO, Elston CW, Blamey RW (2006) Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer (Oxford, England: 1990) 42(3):357–362. https://doi.org/10.1016/j.ejca.2005.10.021

    Article  CAS  Google Scholar 

  43. Lauria R, Perrone F, Carlomagno C, De Laurentiis M, Morabito A, Gallo C, Varriale E, Pettinato G, Panico L, Petrella G et al (1995) The prognostic value of lymphatic and blood vessel invasion in operable breast cancer. Cancer 76(10):1772–1778

    Article  CAS  Google Scholar 

  44. Schoppmann SF, Bayer G, Aumayr K, Taucher S, Geleff S, Rudas M, Kubista E, Hausmaninger H, Samonigg H, Gnant M, Jakesz R, Horvat R (2004) Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg 240(2):306–312

    Article  Google Scholar 

  45. Ejlertsen B, Jensen MB, Rank F, Rasmussen BB, Christiansen P, Kroman N, Kvistgaard ME, Overgaard M, Toftdahl DB, Mouridsen HT (2009) Population-based study of peritumoral lymphovascular invasion and outcome among patients with operable breast cancer. J Natl Cancer Inst 101(10):729–735. https://doi.org/10.1093/jnci/djp090

    Article  PubMed  Google Scholar 

  46. Bettelheim R, Penman HG, Thornton-Jones H, Neville AM (1984) Prognostic significance of peritumoral vascular invasion in breast cancer. Br J Cancer 50(6):771–777

    Article  CAS  Google Scholar 

  47. Mohammed RA, Martin SG, Mahmmod AM, Macmillan RD, Green AR, Paish EC, Ellis IO (2011) Objective assessment of lymphatic and blood vascular invasion in lymph node-negative breast carcinoma: findings from a large case series with long-term follow-up. J Pathol 223(3):358–365. https://doi.org/10.1002/path.2810

    Article  PubMed  Google Scholar 

  48. Mohammed RA, Menon S, Martin SG, Green AR, Paish EC, Ellis IO (2014) Prognostic significance of lymphatic invasion in lymph node-positive breast carcinoma: findings from a large case series with long-term follow-up using immunohistochemical endothelial marker. Mod Pathol 27(12):1568–1577. https://doi.org/10.1038/modpathol.2014.60

    Article  CAS  PubMed  Google Scholar 

  49. Kurozumi S, Joseph C, Sonbul S, Alsaeed S, Kariri Y, Aljohani A, Raafat S, Alsaleem M, Ogden A, Johnston SJ, Aleskandarany MA, Fujii T, Shirabe K, Caldas C, Ashankyty I, Dalton L, Ellis IO, Desmedt C, Green AR, Mongan NP, Rakha EA (2019) A key genomic subtype associated with lymphovascular invasion in invasive breast cancer. Br J Cancer 120(12):1129–1136. https://doi.org/10.1038/s41416-019-0486-6

    Article  CAS  PubMed  Google Scholar 

  50. Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ (2018) PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J Pathol 244(5):512–524. https://doi.org/10.1002/path.5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van Arnam J, Shmulevich I, Rao AUK, Lazar AJ, Sharma A, Thorsson V, Cancer Genome Atlas Research N (2018) Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep 23(1):181–193. https://doi.org/10.1016/j.celrep.2018.03.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen S, Wu G, Xiao G, Du R, Hu N, Xia X, Zhou H (2018) Prediction model of lymphovascular invasion based on clinicopathological factors in Chinese patients with invasive breast cancer. Medicine 97(43):e12973. https://doi.org/10.1097/md.0000000000012973

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kanyilmaz G, Yavuz BB, Aktan M, Karaagac M, Uyar M, Findik S (2019) Prognostic Importance of Ki-67 in breast cancer and its relationship with other prognostic factors. Eur J Breast Health 15(4):256–261. https://doi.org/10.5152/ejbh.2019.4778

    Article  PubMed  PubMed Central  Google Scholar 

  54. He KW, Sun JJ, Liu ZB, Zhuo PY, Ma QH, Liu ZY, Yu ZY (2017) Prognostic significance of lymphatic vessel invasion diagnosed by D2–40 in Chinese invasive breast cancers. Medicine 96(44):e8490. https://doi.org/10.1097/MD.0000000000008490

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feng Y, Wang W, Hu J, Ma J, Zhang Y, Zhang J (2010) Expression of VEGF-C and VEGF-D as significant markers for assessment of lymphangiogenesis and lymph node metastasis in non-small cell lung cancer. Anat Rec (Hoboken, NJ: 2007) 293(5):802–812. https://doi.org/10.1002/ar.21096

    Article  CAS  Google Scholar 

  56. Ding M, Fu X, Tan H, Wang R, Chen Z, Ding S (2012) The effect of vascular endothelial growth factor C expression in tumor-associated macrophages on lymphangiogenesis and lymphatic metastasis in breast cancer. Mol Med Rep 6(5):1023–1029. https://doi.org/10.3892/mmr.2012.1043

    Article  CAS  PubMed  Google Scholar 

  57. Zhang S, Yi S, Zhang D, Gong M, Cai Y, Zou L (2017) Intratumoral and peritumoral lymphatic vessel density both correlate with lymph node metastasis in breast cancer. Sci Rep 7:40364. https://doi.org/10.1038/srep40364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agarwal S, Singh A, Bagga PK (2018) Immunohistochemical evaluation of lymphovascular invasion in carcinoma breast with CD34 and D2–40 and its correlation with other prognostic markers. Indian J Pathol Microbiol 61(1):39–44. https://doi.org/10.4103/IJPM.IJPM_791_16

    Article  PubMed  Google Scholar 

  59. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921. https://doi.org/10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  60. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917. https://doi.org/10.1038/nature03443

    Article  CAS  PubMed  Google Scholar 

  61. Rakha EA, Abd El Rehim D, Pinder SE, Lewis SA, Ellis IO (2005) E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance. Histopathology 46(6):685–693. https://doi.org/10.1111/j.1365-2559.2005.02156.x

    Article  CAS  PubMed  Google Scholar 

  62. Corso G, Intra M, Trentin C, Veronesi P, Galimberti V (2016) CDH1 germline mutations and hereditary lobular breast cancer. Fam Cancer 15(2):215–219. https://doi.org/10.1007/s10689-016-9869-5

    Article  CAS  PubMed  Google Scholar 

  63. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S, Zhou H, Spiegel S, Takabe K (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Can Res 72(3):726–735. https://doi.org/10.1158/0008-5472.can-11-2167

    Article  CAS  Google Scholar 

  64. Miyan M, Schmidt-Mende J, Kiessling R, Poschke I, de Boniface J (2016) Differential tumor infiltration by T-cells characterizes intrinsic molecular subtypes in breast cancer. J Transl Med 14(1):227. https://doi.org/10.1186/s12967-016-0983-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eryilmaz MK, Mutlu H, Unal B, Salim DK, Musri FY, Coskun HS (2018) The importance of stromal and intratumoral tumor lymphocyte infiltration for pathologic complete response in patients with locally advanced breast cancer. J Cancer Res Ther 14(3):619–624. https://doi.org/10.4103/0973-1482.174550

    Article  CAS  PubMed  Google Scholar 

  66. Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M, Khanna KK (2019) Mechanisms of genomic instability in breast cancer. Trends Mol Med 25(7):595–611. https://doi.org/10.1016/j.molmed.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  67. Mohammed RA, Martin SG, Gill MS, Green AR, Paish EC, Ellis IO (2007) Improved methods of detection of lymphovascular invasion demonstrate that it is the predominant method of vascular invasion in breast cancer and has important clinical consequences. Am J Surg Pathol 31(12):1825–1833. https://doi.org/10.1097/PAS.0b013e31806841f6

    Article  PubMed  Google Scholar 

  68. Su YL, Li SH, Chen YY, Chen HC, Tang Y, Huang CH, Chou FF, Wu SC, Rau KM (2014) Post-mastectomy radiotherapy benefits subgroups of breast cancer patients with T1–2 tumor and 1–3 axillary lymph node(s) metastasis. Radiol Oncol 48(3):314–322. https://doi.org/10.2478/raon-2013-0085

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Institutes of Health (NIH), USA grants R01CA160688 to K.T. and R25CA181003 to Roswell Park Comprehensive Cancer Center in support of F.Z.'s research internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Takabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This study examined human data that had been generated in the past by other studies. Informed consent was therefore not obtained in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 281 kb)

Text S1—Details of methods.Table S1—Characteristics of TCGA-BRCA tumors for which LVI status was determinable or not.Table S2—Nottingham histologic scores and LVI status for TCGA-BRCA tumors examined in this study.Table S3—Members of the endothelium-specific 88-gene and xCell gene sets.Table S4—Mutation frequency among LVI-positive and -negative tumors of TCGA-BRCA cohort for ten most commonly mutated genes.Table S5—mSigDb Hallmark and Reactome gene sets with significant enrichment in LVI-positive vs. -negative tumor comparison of TCGA-BRCA cohort by GSVA method.Table S6—mSigDb Hallmark and Reactome gene sets with significant enrichment in LVI-positive vs. -negative tumor comparison of validation cohort by GSVA method.Table S7—Top 20 each of genes whose expression is significantly down- or up-regulated in LVI-positive compared to -negative tumors of TCGA-BRCA cohort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaoka, M., Patnaik, S.K., Zhang, F. et al. Lymphovascular invasion in breast cancer is associated with gene expression signatures of cell proliferation but not lymphangiogenesis or immune response. Breast Cancer Res Treat 181, 309–322 (2020). https://doi.org/10.1007/s10549-020-05630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05630-5

Keywords

Navigation