Skip to main content

Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors

Abstract

Purpose

Many human breast tumors become resistant to endocrine therapies and recur due to estrogen receptor (ERα) mutations that convey constitutive activity and a more aggressive phenotype. Here, we examined the effectiveness of a novel adamantyl antiestrogen, K-07, in suppressing the growth of breast cancer metastases containing the two most frequent ER-activating mutations, Y537S and D538G, and in extending survival in a preclinical metastatic cancer model.

Methods

MCF7 breast cancer cells expressing luciferase and Y537S or D538G ER were injected into NOD-SCID-gamma female mice, and animals were treated orally with the antiestrogen K-07 or control vehicle. Comparisons were also made with the antiestrogen Fulvestrant. The development of metastases was monitored by in vivo bioluminescence imaging with phenotypic characterization of the metastases in liver and lung by immunohistochemical and biochemical analyses.

Results

These breast cancer cells established metastases in liver and lung, and K-07 treatment reduced the metastatic burden. Mice treated with K-07 also survived much longer. By day 70, only 28% of vehicle-treated mice with mutant ER metastases were alive, whereas all K-07-treated D538G and Y537S mice were still alive. K-07 also markedly reduced the level of metastatic cell ER and the expression of ER-regulated genes.

Conclusion

The antiestrogen K-07 can reduce in vivo metastasis of breast cancers and extend host survival in this preclinical model driven by constitutively active mutant ERs, suggesting that this compound may be suitable for further translational examination of its efficacy in suppression of metastasis in breast cancers containing constitutively active mutant ERs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed in this study are available from the corresponding author on reasonable request.

Abbreviations

ER:

Estrogen receptor α

IHC:

Immunohistochemistry

NSG:

NOD-SCID-gamma

SERM:

Selective estrogen receptor modulator

References

  1. Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A et al (2018) Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33(2):173–186e175. https://doi.org/10.1016/j.ccell.2018.01.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S (2018) Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 18(6):377–388. https://doi.org/10.1038/s41568-018-0001-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Richman J, Dowsett M (2019) Beyond 5 years: enduring risk of recurrence in oestrogen receptor-positive breast cancer. Nat Rev Clin Oncol 16(5):296–311. https://doi.org/10.1038/s41571-018-0145-5

    CAS  Article  PubMed  Google Scholar 

  4. Tryfonidis K, Zardavas D, Katzenellenbogen BS, Piccart M (2016) Endocrine treatment in breast cancer: cure, resistance and beyond. Cancer Treat Rev 50:68–81. https://doi.org/10.1016/j.ctrv.2016.08.008

    Article  PubMed  Google Scholar 

  5. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    CAS  Article  PubMed  Google Scholar 

  6. Chu D, Paoletti C, Gersch C, VanDenBerg DA, Zabransky DJ, Cochran RL et al (2016) ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin Cancer Res 22(4):993–999. https://doi.org/10.1158/1078-0432.CCR-15-0943

    CAS  Article  PubMed  Google Scholar 

  7. Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ et al (2016) Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. Elife. https://doi.org/10.7554/eLife.12792

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM et al (2014) Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 20(7):1757–1767. https://doi.org/10.1158/1078-0432.CCR-13-2332

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Lazennec G, Ediger TR, Petz LN, Nardulli AM, Katzenellenbogen BS (1997) Mechanistic aspects of estrogen receptor activation probed with constitutively active estrogen receptors: correlations with DNA and coregulator interactions and receptor conformational changes. Mol Endocrinol 11(9):1375–1386. https://doi.org/10.1210/mend.11.9.9983

    CAS  Article  PubMed  Google Scholar 

  10. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A et al (2013) Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 4(6):1116–1130. https://doi.org/10.1016/j.celrep.2013.08.022

    CAS  Article  PubMed  Google Scholar 

  11. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451. https://doi.org/10.1038/ng.2823

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Toy W, Weir H, Razavi P, Lawson M, Goeppert AU, Mazzola AM et al (2017) Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discov 7(3):277–287. https://doi.org/10.1158/2159-8290.CD-15-1523

    CAS  Article  PubMed  Google Scholar 

  13. Bardia A, Iafrate JA, Sundaresan T, Younger J, Nardi V (2016) Metastatic breast cancer with ESR1 mutation: clinical management considerations from the molecular and precision medicine (MAP) tumor board at Massachusetts General Hospital. Oncologist 21(9):1035–1040. https://doi.org/10.1634/theoncologist.2016-0240

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fanning SW, Jeselsohn R, Dharmarajan V, Mayne CG, Karimi M, Buchwalter G et al (2018) The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. Elife. https://doi.org/10.7554/eLife.37161

    Article  PubMed  PubMed Central  Google Scholar 

  15. Miller CA, Gindin Y, Lu C, Griffith OL, Griffith M, Shen D et al (2016) Aromatase inhibition remodels the clonal architecture of estrogen-receptor-positive breast cancers. Nat Commun 7:12498. https://doi.org/10.1038/ncomms12498

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Laws MJ, Guillen VS, Ziegler Y, Min J, Sharma A et al (2017) tructurally novel antiestrogens elicit differential responses from constitutively active mutant estrogen receptors in breast cancer cells and tumors. Cancer Res 77(20):5602–5613. https://doi.org/10.1158/0008-5472.CAN-17-1265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Chandarlapaty S, Chen D, He W, Sung P, Samoila A, You D et al (2016) Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 clinical trial. JAMA Oncol 2(10):1310–1315. https://doi.org/10.1001/jamaoncol.2016.1279

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O'Leary B, Kilburn L et al (2018) Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol 29(1):145–153. https://doi.org/10.1093/annonc/mdx483

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Lopez-Knowles E, Pearson A, Schuster G, Gellert P, Ribas R, Yeo B et al (2019) Molecular characterisation of aromatase inhibitor-resistant advanced breast cancer: the phenotypic effect of ESR1 mutations. Br J Cancer 120(2):247–255. https://doi.org/10.1038/s41416-018-0345-x

    CAS  Article  PubMed  Google Scholar 

  20. Spoerke JM, Gendreau S, Walter K, Qiu J, Wilson TR, Savage H et al (2016) Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat Commun 7:11579. https://doi.org/10.1038/ncomms11579

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ratajczak MZ, Jadczyk T, Schneider G, Kakar SS, Kucia M (2013) Induction of a tumor-metastasis-receptive microenvironment as an unwanted and underestimated side effect of treatment by chemotherapy or radiotherapy. J Ovarian Res 6(1):95. https://doi.org/10.1186/1757-2215-6-95

    Article  PubMed  PubMed Central  Google Scholar 

  22. Min J, Guillen VS, Sharma A, Zhao Y, Ziegler Y, Gong P et al (2017) Adamantyl antiestrogens with novel side chains reveal a spectrum of activities in suppressing estrogen receptor mediated activities in breast cancer cells. J Med Chem 60(14):6321–6336. https://doi.org/10.1021/acs.jmedchem.7b00585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Marshall JC, Collins JW, Nakayama J, Horak CE, Liewehr DJ, Steinberg SM et al (2012) Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J Natl Cancer Inst 104(17):1306–1319. https://doi.org/10.1093/jnci/djs319

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D (2010) The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene 29(2):251–262. https://doi.org/10.1038/onc.2009.316

    CAS  Article  PubMed  Google Scholar 

  25. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904. https://doi.org/10.1038/nm1469

    CAS  Article  PubMed  Google Scholar 

  26. Bahreini A, Li Z, Wang P, Levine KM, Tasdemir N, Cao L et al (2017) Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Res 19(1):60. https://doi.org/10.1186/s13058-017-0851-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Wang P, Bahreini A, Gyanchandani R, Lucas PC, Hartmaier RJ, Watters RJ et al (2016) Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free dna of breast cancer patients. Clin Cancer Res 22(5):1130–1137. https://doi.org/10.1158/1078-0432.CCR-15-1534

    CAS  Article  PubMed  Google Scholar 

  28. Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S et al (2015) Excess TGF-beta mediates muscle weakness associated with bone metastases in mice. Nat Med 21(11):1262–1271. https://doi.org/10.1038/nm.3961

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S et al (2017) The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun 8(1):864. https://doi.org/10.1038/s41467-017-00910-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Nelson ER, Li S, Kennedy M, Payne S, Kilibarda K, Groth J et al (2016) Chemotherapy enriches for an invasive triple-negative breast tumor cell subpopulation expressing a precursor form of N-cadherin on the cell surface. Oncotarget 7(51):84030–84042. https://doi.org/10.18632/oncotarget.12767

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim J, Sato M, Li Q, Lydon JP, Demayo FJ, Bagchi IC et al (2008) Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol Cell Biol 28(5):1770–1782. https://doi.org/10.1128/MCB.01556-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Janiszewska M, Tabassum DP, Castano Z, Cristea S, Yamamoto KN, Kingston NL et al (2019) Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nat Cell Biol 21(7):879–888. https://doi.org/10.1038/s41556-019-0346-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16(4):201–218. https://doi.org/10.1038/nrc.2016.25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Gates LA, Gu G, Chen Y, Rohira AD, Lei JT, Hamilton RA et al (2018) Proteomic profiling identifies key coactivators utilized by mutant ERalpha proteins as potential new therapeutic targets. Oncogene 37(33):4581–4598. https://doi.org/10.1038/s41388-018-0284-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E et al (2018) p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun 9(1):2801. https://doi.org/10.1038/s41467-018-05078-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA et al (2015) Progesterone receptor modulates ERalpha action in breast cancer. Nature 523(7560):313–317. https://doi.org/10.1038/nature14583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V et al (2016) A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell 29(3):407–422. https://doi.org/10.1016/j.ccell.2016.02.002

    CAS  Article  PubMed  Google Scholar 

  38. Ozdemir B, Sflomos G, Brisken C (2018) The challenges of modelling hormone-receptor positive breast cancer in mice. Endocr Relat Cancer 25(5):R319–R330. https://doi.org/10.1530/ERC-18-0063

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the Breast Cancer Research Foundation (BCRF-083 to BSK and BCRF-084 to JAK and BSK), IIDRP-16-006 to BHP, NIH/NCI Grant 1R01CA220284 (to BSK, JAK, and KWN), Susan G. Komen SAC 170079 to BHP, and NIH Grant R01CA234025 and DOD Breast Cancer Research Program Grant BC171214 to ERN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benita S. Katzenellenbogen.

Ethics declarations

Conflict of interest

JAK is a consultant and stockholder of Radius Health, Inc. BSK and JAK have ownership interest in Celcuity, Inc. Patent applications covering K-07 that include JAK, SHK, and BSK as inventors have been filed by the University of Illinois. BHP receives royalties from Horizon Discovery, LTD, was a scientific advisory board member for Loxo Oncology and had ownership interest in Loxo Oncology, was a paid consultant for Foundation Medicine, Inc., H3 Biomedicine, Casdin Capital, Roche, Eli Lilly, Astra Zeneca, is an unpaid consultant for Tempus, and is a paid consultant for Jackson Laboratories, Celcuity, Pathovax, with ownership interest in Celcuity, and has research contracts with Abbvie, Foundation Medicine Inc. and Pfizer. The other authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal experiments were performed in accordance with institutional protocols and approved by the University of Illinois Institutional Animal Care and Use Committee (PHS Assurance: D16-00,075 (A3118-01)). This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mary J. Laws and Yvonne Ziegler are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 365 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laws, M.J., Ziegler, Y., Shahoei, S.H. et al. Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors. Breast Cancer Res Treat 181, 297–307 (2020). https://doi.org/10.1007/s10549-020-05629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05629-y

Keywords

  • Antiestrogen
  • Estrogen receptor
  • Metastasis
  • Breast cancer