Skip to main content

Advertisement

Log in

Inflammatory breast cancer cells are characterized by abrogated TGFβ1-dependent cell motility and SMAD3 activity

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Inflammatory breast cancer (IBC) is an aggressive form of breast cancer with elevated metastatic potential, characterized by tumor emboli in dermal and parenchymal lymph vessels. This study has investigated the hypothesis that TGFβ signaling is implicated in the molecular biology of IBC.

Methods

TGFβ1-induced cell motility and gene expression patterns were investigated in three IBC and three non-IBC (nIBC) cell lines. Tissue samples from IBC and nIBC patients were investigated for the expression of nuclear SMAD2, SMAD3, and SMAD4. SMAD protein levels were related to gene expression data.

Results

TGFβ1-induced cell motility was strongly abrogated in IBC cells (P = 0.003). Genes differentially expressed between IBC and nIBC cells post TGFβ1 exposure revealed attenuated expression of SMAD3 transcriptional regulators, but overexpression of MYC target genes in IBC. IBC patient samples demonstrated a near absence of SMAD3 and -4 expression in the primary tumor compared to nIBC patient samples (P < 0.001) and a further reduction of staining intensity in tumor emboli. Integration of gene and protein expression data revealed that a substantial fraction of the IBC signature genes correlated with SMAD3 and these genes are indicative of attenuated SMAD3 signaling in IBC.

Conclusion

We demonstrate attenuated SMAD3 transcriptional activity and SMAD protein expression in IBC, together with obliterated TGFβ1-induced IBC cell motility. The further reduction of nuclear SMAD expression levels in tumor emboli suggests that the activity of these transcription factors is involved in the metastatic dissemination of IBC cells, possibly by enabling collective invasion after partial EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The Affymetrix gene expression datasets E-MTAB-1006 and E-MTAB-1547 are publicly available at https://www.ebi.ac.uk/.

References

  1. Woodward WA (2015) Inflammatory breast cancer: unique biological and therapeutic considerations. Lancet Oncol 16(15):568–576. https://doi.org/10.1016/S1470-2045(15)00146-1

    Article  CAS  Google Scholar 

  2. Arora J, Sauer SJ, Tarpley M, Vermeulen P, Rypens C, Van Laere S, Williams KP, Devi GR, Dewhirst MW (2017) Inflammatory breast cancer tumor emboli express high levels of anti-apoptotic proteins: use of a quantitative high content and high-throughput 3D IBC spheroid assay to identify targeting strategies. Oncotarget 8(16):25848–25863. https://doi.org/10.18632/oncotarget.15667

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Laere SJ, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, Masuda H, van Dam P, Woodward WA, Viens P, Cristofanilli M, Birnbaum D, Dirix L, Reuben JM, Bertucci F (2013) Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clin Cancer Res 19(17):4685–4696. https://doi.org/10.1158/1078-0432.CCR-12-2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424. https://doi.org/10.1038/nrc2853

    Article  CAS  PubMed  Google Scholar 

  8. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630. https://doi.org/10.1038/nrm3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13(5):328–341. https://doi.org/10.1038/nrc3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-beta signal transduction. J Cell Sci 114(24):4359–4369

    CAS  PubMed  Google Scholar 

  11. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF (2004) Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 24(6):2546–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertucci F, Lagarde A, Ferrari A, Finetti P, Charafe-Jauffret E, Van Laere S, Adelaide J, Viens P, Thomas G, Birnbaum D, Olschwang S (2012) 8q24 Cancer risk allele associated with major metastatic risk in inflammatory breast cancer. PLoS ONE 7(5):37943. https://doi.org/10.1371/journal.pone.0037943

    Article  CAS  Google Scholar 

  13. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E (2009) Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11(11):1287–1296. https://doi.org/10.1038/ncb1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matise LA, Palmer TD, Ashby WJ, Nashabi A, Chytil A, Aakre M, Pickup MW, Gorska AE, Zijlstra A, Moses HL (2012) Lack of transforming growth factor-beta signaling promotes collective cancer cell invasion through tumor-stromal crosstalk. Breast Cancer Res 14(4):R98. https://doi.org/10.1186/bcr3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kohn EA, Du Z, Sato M, Van Schyndle CM, Welsh MA, Yang YA, Stuelten CH, Tang B, Ju W, Bottinger EP, Wakefield LM (2010) A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFbeta signaling in the mammary gland. Breast Cancer Res 12(5):R83. https://doi.org/10.1186/bcr2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoot KE, Lighthall J, Han G, Lu SL, Li A, Ju W, Kulesz-Martin M, Bottinger E, Wang XJ (2008) Keratinocyte-specific Smad2 ablation results in increased epithelial-mesenchymal transition during skin cancer formation and progression. J Clin Invest 118(8):2722–2732. https://doi.org/10.1172/JCI33713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kohn EA, Yang YA, Du Z, Nagano Y, Van Schyndle CM, Herrmann MA, Heldman M, Chen JQ, Stuelten CH, Flanders KC, Wakefield LM (2012) Biological responses to TGF-beta in the mammary epithelium show a complex dependency on Smad3 gene dosage with important implications for tumor progression. Mol Cancer Res 10(10):1389–1399. https://doi.org/10.1158/1541-7786.MCR-12-0136-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jolly MK, Boareto M, Debeb BG, Aceto N, Farach-Carson MC, Woodward WA, Levine H (2017) Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer 3:21. https://doi.org/10.1038/s41523-017-0023-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Novitskiy SV, Forrester E, Pickup MW, Gorska AE, Chytil A, Aakre M, Polosukhina D, Owens P, Yusupova DR, Zhao Z, Ye F, Shyr Y, Moses HL (2014) Attenuated transforming growth factor beta signaling promotes metastasis in a model of HER2 mammary carcinogenesis. Breast Cancer Res 16(5):425. https://doi.org/10.1186/s13058-014-0425-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manai M, Thomassin-Piana J, Gamoudi A, Finetti P, Lopez M, Eghozzi R, Ayadi S, Lamine OB, Manai M, Rahal K, Charafe-Jauffret E, Jacquemier J, Viens P, Birnbaum D, Boussen H, Chaffanet M, Bertucci F (2017) MARCKS protein overexpression in inflammatory breast cancer. Oncotarget 8(4):6246–6257. https://doi.org/10.18632/oncotarget.14057

    Article  PubMed  Google Scholar 

  21. Chen CH, Statt S, Chiu CL, Thai P, Arif M, Adler KB, Wu R (2014) Targeting myristoylated alanine-rich C kinase substrate phosphorylation site domain in lung cancer. Mechanisms and therapeutic implications. Am J Respir Crit Care Med 190(10):1127–1138. https://doi.org/10.1164/rccm.201408-1505OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dorris E, O'Neill A, Hanrahan K, Treacy A, Watson RW (2017) MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer. Oncotarget 8(42):72021–72030. https://doi.org/10.18632/oncotarget.18894

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Liu Y, Yu CJ, Dai F, Xiong J, Li HJ, Wu ZS, Ding R, Wang H (2017) Role of ARPC2 in human gastric cancer. Med Inflamm 2017:5432818. https://doi.org/10.1155/2017/5432818

    Article  CAS  Google Scholar 

  24. Hanniford D, Segura MF, Zhong J, Philips E, Jirau-Serrano X, Darvishian F, Berman RS, Shapiro RL, Pavlick AC, Brown B, Osman I, Hernando E (2015) Identification of metastasis-suppressive microRNAs in primary melanoma. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju494

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rauhala HE, Teppo S, Niemela S, Kallioniemi A (2013) Silencing of the ARP2/3 complex disturbs pancreatic cancer cell migration. Anticancer Res 33(1):45–52

    CAS  PubMed  Google Scholar 

  26. Hachim MY, Hachim IY, Dai M, Ali S, Lebrun JJ (2018) Differential expression of TGFbeta isoforms in breast cancer highlights different roles during breast cancer progression. Tumour Biol 40(1):1010428317748254. https://doi.org/10.1177/1010428317748254

    Article  CAS  PubMed  Google Scholar 

  27. Matsuzaki K (2013) Smad phospho-isoforms direct context-dependent TGF-beta signaling. Cytokine Growth Factor Rev 24(4):385–399. https://doi.org/10.1016/j.cytogfr.2013.06.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Diether Lambrechts and his research team for their collaboration on RNA-sequencing, and Dr. Cecile Colpaert and Dr. Gert Van den Eynden for their input in the histological analysis. We also thank the World IBC Consortium (WIBCC) for their support.

Funding

This work was supported by an Emmanuel Van der Schueren grant for Charlotte Rypens from Kom op tegen Kanker (Stand up to Cancer), the Flemish cancer society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Rypens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study is conducted in accordance with the ethical standards of the GZA Hospitals.

Research involved human and animal participants

This article does not contain any studies with animals performed by any of the authors.

Informed consent

The need for informed consent was waived by the ethical committee because remnant, non-diagnostic tissue was used for all analyses. Patient have had the opportunity to opt-out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rypens, C., Marsan, M., Van Berckelaer, C. et al. Inflammatory breast cancer cells are characterized by abrogated TGFβ1-dependent cell motility and SMAD3 activity. Breast Cancer Res Treat 180, 385–395 (2020). https://doi.org/10.1007/s10549-020-05571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05571-z

Keywords

Navigation