Skip to main content

The role of Micro-CT in imaging breast cancer specimens

Abstract

Purpose

The goal of breast cancer surgery is to remove all of the cancer with a minimum of normal tissue, but absence of full 3-dimensional information on the specimen makes this difficult to achieve.

Method

Micro-CT is a high resolution, X-ray, 3D imaging method, widely used in industry but rarely in medicine.

Results

We imaged and analyzed 173 partial mastectomies (129 ductal carcinomas, 14 lobular carcinomas, 28 DCIS). Imaging was simple and rapid. The size and shape of the cancers seen on Micro-CT closely matched the size and shape of the cancers seen at specimen dissection. Micro-CT images of multicentric/multifocal cancers revealed multiple non-contiguous masses. Micro-CT revealed cancer touching the specimen edge for 93% of the 114 cases judged margin positive by the pathologist, and 28 of the cases not seen as margin positive on pathological analysis; cancer occupied 1.55% of surface area when both the pathologist and Micro-CT suggested cancer at the edge, but only 0.45% of surface area for the “Micro-CT-Only-Positive Cases”. Thus, Micro-CT detects cancers that touch a very small region of the specimen surface, which is likely to be missed on sectioning.

Conclusions

Micro-CT provides full 3D images of breast cancer specimens, allowing one to identify, in minutes rather than hours, while the patient is in OR, margin-positive cancers together with information on where the cancer touches the edge, in a fashion more accurate than possible from the histology slides alone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Isaacs AJ, Gemignani ML, Pusic A, Sedrakyan A (2016) Association of breast conservation surgery for cancer with 90-day reoperation rates in New York state. JAMA Surg 151(7):648–655

    PubMed  Google Scholar 

  2. Wilke LG, Czechura T, Wang C, Lapin B, Liederbach E, Winchester DP, Yao K (2014) Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: a report from the National Cancer Data Base, 2004–2010. JAMA Surg 149(12):1296–1305

    PubMed  Google Scholar 

  3. Vrieling C, van Werkhoven E, Maingon P, Poortmans P, Weltens C, Fourquet A, Schinagl D, Oei B, Rodenhuis CC, Horiot JC, Struikmans H, Van Limbergen E, Kirova Y, Elkhuizen P, Bongartz R, Miralbell R, Morgan DA, Dubois JB, Remouchamps V, Mirimanoff RO, Hart G, Collette S, Collette L, Bartelink H (2017) European organisation for research and treatment of cancer, radiation oncology and breast cancer groups Prognostic factors for local control in breast cancer after long-term follow-up in the EORTC Boost vs No Boost Trial: a randomized clinical trial. JAMA Oncol 3(1):42–48

    PubMed  Google Scholar 

  4. Houssami N, Macaskill P, Marinovich ML, Dixon JM, Irwig L, Brennan ME, Solin LJ (2010) Meta-analysis of the impact of surgical margins on local recurrence in women with early-stage invasive breast cancer treated with breast-conserving therapy. Eur J Cancer 18:3219–3232

    Google Scholar 

  5. Braunstein LZ, Taghian AG, Niemierko A, Salama L, Capuco A, Bellon JR, Wong JS, Punglia RS, MacDonald SM, Harris JR (2017) Breast-cancer subtype, age, and lymph node status as predictors of local recurrence following breast-conserving therapy. Breast Cancer Res Treat 161(1):173–179

    PubMed  Google Scholar 

  6. Mihalcik SA, Rawal B, Braunstein LZ, Capuco A, Wong JS, Punglia RS, Bellon JR, Harris JR (2017) The impact of reexcision and residual disease on local recurrence following breast-conserving therapy. Ann Surg Oncol 24(7):1868–1873

    PubMed  Google Scholar 

  7. Vos EL, Gaal J, Verhoef C, Brouwer K, van Deurzen CHM, Koppert LB (2017) Focally positive margins in breast conserving surgery: predictors, residual disease, and local recurrence. Eur J Surg Oncol 43(10):1846–1854

    CAS  PubMed  Google Scholar 

  8. Bodilsen A, Bjerre K, Offersen BV, Vahl P, Ejlertsen B, Overgaard J, Christiansen P (2015) The influence of repeat surgery and residual disease on recurrence after breast-conserving surgery: a Danish Breast Cancer Cooperative Group Study. Ann Surg Oncol 22(Suppl 3):S476–S485

    PubMed  Google Scholar 

  9. Michaelson JS, Chen LL, Silverstein M, Cheongsiatmoy JA, Mihm MV Jr, Sober AJ, Tanabe KK, Smith BL, Younger J (2009) Why cancer at the primary site and in the nodes contributes to the risk of cancer death. Cancer 115(21):5084–5094

    PubMed  Google Scholar 

  10. EBCTCG (Early Breast Cancer Trialists' Collaborative Group), McGale P, Taylor C, Correa C, Cutter D, Duane F, Ewertz M, Gray R, Mannu G, Peto R, Whelan T, Wang Y, Wang Z, Darby S (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383(9935):2127–2135

    Google Scholar 

  11. Moran MS, Schnitt SJ, Giuliano AE, Harris JR, Khan SA, Horton J, Klimberg S, Chavez-MacGregor M, Freedman G, Houssami N, Johnson PL, Morrow M (2014) Society of surgical oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Ann Surg Oncol 21(3):704–716

    PubMed  Google Scholar 

  12. Morrow M, Van Zee KJ, Solin LJ, Houssami N, Chavez-MacGregor M, Harris JR, Horton J, Hwang S, Johnson PL, Marinovich ML, Schnitt SJ, Wapnir I, Moran MS (2016) Society of surgical oncology-American Society for Radiation Oncology-American Society of Clinical Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in Ductal carcinoma in situ. J Clin Oncol 34(33):4040–4046

    PubMed  PubMed Central  Google Scholar 

  13. St John ER, Al-Khudairi R, Ashrafian H, Athanasiou T, Takats Z, Hadjiminas DJ, Darzi A, Leff DR (2017) Diagnostic accuracy of intraoperative techniques for margin assessment in breast cancer surgery: a meta-analysis. Ann Surg 265(2):300–310

    PubMed  Google Scholar 

  14. Leff DR, St John ER, Takats Z (2017) Reducing the margins of error during breast-conserving surgery: disruptive technologies or traditional disruptions? JAMA Surg 152(6):517–518

    PubMed  Google Scholar 

  15. St John ER, Balog J, McKenzie JS, Rossi M, Covington A, Muirhead L, Bodai Z, Rosini F, Speller AVM, Shousha S, Ramakrishnan R, Darzi A, Takats Z, Leff DR (2017) Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res 19(1):59

    PubMed  PubMed Central  Google Scholar 

  16. Thill M, Baumann K, Barinoff J (2014) Intraoperative assessment of margins in breast conservative surgery–still in use? J Surg Oncol 110(1):15–20. https://doi.org/10.1002/jso.23634

    Article  PubMed  Google Scholar 

  17. Brachtel EF, Johnson NB, Huck AE, Rice-Stitt TL, Vangel MG, Smith BL, Tearney GJ, Kang D (2016) Spectrally encoded confocal microscopy for diagnosing breast cancer in excision and margin specimens. Lab Invest 96(4):459–467

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Coble J, Reid V (2017) Achieving clear margins Directed shaving using MarginProbe, as compared to a full cavity shave approach. Am J Surg 213(4):627–630

    PubMed  Google Scholar 

  19. Boughey JC, Hieken TJ, Jakub JW, Degnim AC, Grant CS, Farley DR, Thomsen KM, Osborn JB, Keeney GL, Habermann EB (2014) Impact of analysis of frozen-section margin on reoperation rates in women undergoing lumpectomy for breast cancer: evaluation of the National Surgical Quality Improvement Program data. Surgery 156(1):190–197

    PubMed  Google Scholar 

  20. Zysk AM, Chen K, Gabrielson E, Tafra L, May Gonzalez EA, Canner JK, Schneider EB, Cittadine AJ, Scott Carney P, Boppart SA, Tsuchiya K, Sawyer K, Jacobs LK (2015) Intraoperative assessment of final margins with a handheld optical imaging probe during breast-conserving surgery may reduce the reoperation rate: results of a multicenter study. Ann Surg Oncol 22(10):3356–3362

    PubMed  PubMed Central  Google Scholar 

  21. de Boer LL, Hendriks BH, van Duijnhoven F, Peeters-Baas MT, Van de Vijver K, Loo CE, Jóźwiak K, Sterenborg HJ, Ruers TJ (2016) Using DRS during breast conserving surgery: identifying robust optical parameters and influence of inter-patient variation. Biomed Opt Express 7(12):5188–5200

    PubMed  PubMed Central  Google Scholar 

  22. Wong TTW, Zhang R, Hai P, Zhang C, Pleitez MA, Aft RL, Novack DV, Wang LV (2017) Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci Adv 3(5):e1602168

    PubMed  PubMed Central  Google Scholar 

  23. Diment J, Guterman A, Shapiro M, Peles Z, Maishar R, Gur A, Kolka E, Brem R (2016) An intraoperative MRI system for margin assessment in breast conserving surgery: initial results from a novel technique. J Surg Oncol 114(1):22–26

    PubMed  Google Scholar 

  24. Chagpar AB, Butler M, Killelea BK, Horowitz NR, Stavris K, Lannin DR, Papa M, Allweis T, Karni T, Sandbank J, Konichezky M (2015) Does three-dimensional intraoperative specimen imaging reduce the need for re-excision in breast cancer patients? A prospective cohort study. Am J Surg 210(5):886–890

    PubMed  Google Scholar 

  25. Clarke GM, Holloway CM, Zubovits JT, Nofech-Mozes S, Liu K, Murray M, Wang D, Yaffe MJ (2016) Whole-mount pathology of breast lumpectomy specimens improves detection of tumour margins and focality. Histopathology 69(1):35–44

    PubMed  Google Scholar 

  26. Chang TP, Leff DR, Shousha S, Hadjiminas DJ, Ramakrishnan R, Hughes MR, Yang GZ, Darzi A (2015) Imaging breast cancer morphology using probe-based confocal laser endomicroscopy: towards a real-time intraoperative imaging tool for cavity scanning. Breast Cancer Res Treat 153(2):299–310

    PubMed  Google Scholar 

  27. Tao YK, Shen D, Sheikine Y, Ahsen OO, Wang HH, Schmolze DB, Johnson NB, Brooker JS, Cable AE, Connolly JL, Fujimoto JG (2014) Assessment of breast pathologies using nonlinear microscopy. Proc Natl Acad Sci USA 111(43):15304–15309

    CAS  PubMed  Google Scholar 

  28. Brown JQ, Bydlon TM, Kennedy SA, Caldwell ML, Gallagher JE, Junker M, Wilke LG, Barry WT, Geradts J, Ramanujam N (2013) Optical spectral surveillance of breast tissue landscapes for detection of residual disease in breast tumor margins. PLoS ONE 8(7):e69906

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Assayag O, Antoine M, Sigal-Zafrani B, Riben M, Harms F, Burcheri A, Grieve K, Dalimier E, Conte Le, de Poly B, Boccara C (2014) Large field, high resolution full-field optical coherence tomography: a pre-clinical study of human breast tissue and cancer assessment. Technol Cancer Res Treat 13(5):455–468

    PubMed  PubMed Central  Google Scholar 

  30. Nguyen FT, Zysk AM, Chaney EJ, Kotynek JG, Oliphant UJ, Bellafiore FJ, Rowland KM, Johnson PA, Boppart SA (2009) Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res 69(22):8790–8796

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Amer HA, Schmitzberger F, Ingold-Heppner B, Kussmaul J, El Tohamy MF, Tantawy HI, Hamm B, Makowski M, Fallenberg EM (2017) Digital breast tomosynthesis versus full-field digital mammography-Which modality provides more accurate prediction of margin status in specimen radiography? Eur J Radiol 93:258–264

    PubMed  Google Scholar 

  32. Miller CL, Coopey SB, Rafferty E, Gadd M, Smith BL, Specht MC (2016) Comparison of intra-operative specimen mammography to standard specimen mammography for excision of non-palpable breast lesions: a randomized trial. Breast Cancer Res Treat 155(3):513–519

    PubMed  Google Scholar 

  33. Hisada T, Sawaki M, Ishiguro J, Adachi Y, Kotani H, Yoshimura A, Hattori M, Yatabe Y, Iwata H (2016) Impact of intraoperative specimen mammography on margins in breast-conserving surgery. Mol Clin Oncol 5(3):269–272

    PubMed  PubMed Central  Google Scholar 

  34. van Bommel AC, Spronk PE, Vrancken Peeters MT, Jager A, Lobbes M, Maduro JH, Mureau MA, Schreuder K, Smorenburg CH, Verloop J, Westenend PJ, Wouters MW, Siesling S, Tjan-Heijnen VC, van Dalen T, NABON Breast Cancer Audit (2017) Clinical auditing as an instrument for quality improvement in breast cancer care in the Netherlands: the national NABON Breast Cancer Audit. J Surg Oncol 115(3):243–249

    PubMed  Google Scholar 

  35. Smith BL, Gadd MA, Lanahan CR, Rai U, Tang R, Rice-Stitt T, Merrill AL, Strasfeld DB, Ferrer JM, Brachtel EF, Specht MC (2018) BuReal-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system. Breast Cancer Res Treat 171(2):413–420

    PubMed  PubMed Central  Google Scholar 

  36. Haloua MH, Volders JH, Krekel NM, Lopes Cardozo AM, de Roos WK, de Widt-Levert LM, van der Veen H, Rijna H, Bergers E, Jóźwiak K, Meijer S, van den Tol P (2016) Intraoperative ultrasound guidance in breast-conserving surgery shows superiority in oncological outcome, long-term cosmetic and patient-reported outcomes: final outcomes of a randomized controlled trial (COBALT). Ann Surg Oncol 23(1):30–37

    PubMed  Google Scholar 

  37. Theunissen CI, Rust EA, Edens MA, Bandel C, Ooster-van V, den Berg JG, Jager PL, Noorda EM, Francken AB (2017) Radioactive seed localization is the preferred technique in nonpalpable breast cancer compared with wire-guided localization and radioguided occult lesion localization. Nucl Med Commun 38(5):396–401

    PubMed  Google Scholar 

  38. Langhans L, Tvedskov TF, Klausen TL, Jensen MB, Talman ML, Vejborg I, Benian C, Roslind A, Hermansen J, Oturai PS, Bentzon N, Kroman N (2017) Radioactive seed localization or wire-guided localization of nonpalpable invasive and in situ breast cancer: a randomized, multicenter, open-label trial. Ann Surg 266(1):29–35

    PubMed  Google Scholar 

  39. Chagpar AB, Killelea BK, Tsangaris TN, Butler M, Stavris K, Li F, Yao X, Bossuyt V, Harigopal M, Lannin DR, Pusztai L, Horowitz NR (2015) A randomized, controlled trial of cavity shave margins in breast cancer. N Engl J Med 373(6):503–510

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang K, Ren Y, He J (2017) Cavity shaving plus lumpectomy versus lumpectomy alone for patients with breast cancer undergoing breast-conserving surgery: a systematic review and meta-analysis. PLoS ONE 12(1):e0168705

    PubMed  PubMed Central  Google Scholar 

  41. Tang SS et al (2017) Current margin practice and effect on re-excision rates following the publication of the SSO-ASTRO consensus and ABS consensus guidelines: a national prospective study of 2858 women undergoing breast-conserving therapy in the UK and Ireland. Eur J Cancer 84:315–324

    PubMed  Google Scholar 

  42. Morrow M, Abrahamse P, Hofer TP, Ward KC, Hamilton AS, Kurian AW, Katz SJ, Jagsi R (2017) Trends in reoperation after initial lumpectomy for breast cancer: addressing overtreatment in surgical management. JAMA Oncol 3(10):1352–1357

    PubMed  PubMed Central  Google Scholar 

  43. Butler-Henderson K, Lee AH, Price RI, Waring K (2014) Intraoperative assessment of margins in breast conserving therapy: a systematic review. Breast 23(2):112–119

    PubMed  Google Scholar 

  44. Chan BK, Wiseberg-Firtell JA, Jois RH, Jensen K, Audisio RA (2015) Localization techniques for guided surgical excision of non-palpable breast lesions. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009206.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gray RJ, Pockaj BA, Garvey E, Blair S (2018) Intraoperative margin management in breast-conserving surgery: a systematic review of the literature. Ann Surg Oncol 25(1):18–27

    PubMed  Google Scholar 

  46. O'Kelly Priddy CM, Forte VA, Lang JE (2016) The importance of surgical margins in breast cancer. J Surg Oncol 113(3):256–263

    PubMed  Google Scholar 

  47. Tang R, Buckley JM, Fernandez L, Coopey S, Aftreth O, Michaelson J, Saksena M, Lei L, Specht M, Gadd M, Yagi Y, Rafferty E, Brachtel E, Smith BL (2013) Micro-computed tomography (Micro-CT): a novel approach for intraoperative breast cancer specimen imaging. Breast Cancer Res Treat 139(2):311–316

    PubMed  Google Scholar 

  48. Tang R, Coopey SB, Buckley JM, Aftreth OP, Fernandez LJ, Brachtel EF, Michaelson JS, Gadd MA, Specht MC, Koerner FC, Smith BL (2013) A pilot study evaluating shaved cavity margins with micro-computed tomography: a novel method for predicting lumpectomy margin status intraoperatively. Breast J 19(5):485–489

    PubMed  Google Scholar 

  49. Sarraj WM, Tang R, Najjar AJ, Griffin M, Zambeli-Ljepovic A, Senter-Zapata M, Ly A, Brachtel E, Aftreth O, Gilbertson J, Yagi Y, Gadd M, Hughes KS, Smith BL, Michaelson JS (2015) Prediction of primary breast cancer size and t- stage using micro computed tomography (Micro-CT) in lumpectomy specimens. J Pathol Inform 6:60

    PubMed  PubMed Central  Google Scholar 

  50. Senter-Zapata M, Patel K, Bautista P, Griffin M, Michaelson JS, Yagi Y (2016) The role of micro-ct in 3D histology imaging. Pathobiology 83:140–147

    PubMed  Google Scholar 

  51. Tang R, Saksena M, Coopey SB, Fernandez L, Buckley JM, Lei L, Aftreth O, Koerner F, Michaelson J, Rafferty E, Brachtel E, Smith BL (2016) Intraoperative micro-computed tomography: a novel method for determination of primary tumor dimensions in breast cancer specimens. Br J Radiol 89:2015

    Google Scholar 

  52. Ligthart ST, Coumans FA, Bidard FC, Simkens LH, Punt CJ, de Groot MR, Attard G, de Bono JS, Pierga JY, Terstappen LW (2013) Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PLoS ONE 8(6):e67148

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Müller M, de Sena OI, Allner S, Ferstl S, Bidola P, Mechlem K, Fehringer A, Hehn L, Dierolf M, Achterhold K, Gleich B, Hammel JU, Jahn H, Mayer G, Pfeiffer F (2017) Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography. Proc Natl Acad Sci USA 114(47):12378–12383

    PubMed  Google Scholar 

  54. Busse M, Müller M, Kimm MA, Ferstl S, Allner S, Achterhold K, Herzen J, Pfeiffer F (2018) Three-dimensional virtual histology enabled through cytoplasm-specific X-ray stain for microscopic and nanoscopic computed tomography. Proc Natl Acad Sci USA 115(10):2293–2298

    CAS  PubMed  Google Scholar 

  55. Troschel FM, DiCorpo D, Griffin M, Mario J, Hariri LP, Shepard JA, Ott H, Wright CD, Muniappan A, Lanuti M, Michaelson J, Fintelmann FJ (2017) Perioperative 3-dimensional micro computed tomography of human surgical lung specimens: a pilot study. Am J Respir Crit Care Med 195:A4903

    Google Scholar 

  56. Michaelson J, Satija S, Moore R, Weber G, Halpern E, Garland A, Kopans DB (2003) Estimates of the breast cancer growth rate and sojourn time from screening database information. J Women’s Imaging 5:3–10

    Google Scholar 

  57. Chen LL, Nolan M, Silverstein M, Mihm MV Jr, Sober AJ, Tanabe KK, Smith BL, Younger J, Michaelson JS (2009) The impact of primary tumor size, nodal status, and other prognostic factors on the risk of cancer death. Cancer 115(21):5071–5083

    PubMed  Google Scholar 

  58. Milano DF et al (2016) Regulators of metastasis modulate the migratory response to cell contact under spatial confinement. Biophys J 110(8):1886–1895

    CAS  PubMed  PubMed Central  Google Scholar 

  59. https://www.nanomedicine.com/NMI/8.5.1.htm

  60. Larrue A, Rattner A, Peter ZA, Olivier C, Laroche N, Vico L, Peyrin F (2011) Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone. PLoS ONE 6(7):e21297

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Many thanks for equipment provided by Bruker Skyscan and Nikon Metrology, and funding provided by Nikon Metrology. Micro-CT imaging was also provided at the MIT Center for Bits and Atoms, 20 Ames Street. Cambridge, MA 02139. Many thanks to Drs. Barbara Smith and Michelle Gadd, and especially to Dr. Thomas Gudewicz for his gracious help with the pathological aspects of this work.

Funding

This study was funded in part by an unnumbered contract from Nikon Metrology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Michaelson.

Ethics declarations

Conflict of interest

James Michaelson was the PI on the unnumbered contract from Nikon Metrology. James Michaelson has received no speaker honoraria from any company, nor does he own any stock, nor is he a member of any committee related to this work. Otherwise, none of the authors had any has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 71999 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DiCorpo, D., Tiwari, A., Tang, R. et al. The role of Micro-CT in imaging breast cancer specimens. Breast Cancer Res Treat 180, 343–357 (2020). https://doi.org/10.1007/s10549-020-05547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05547-z

Keywords

  • Breast cancer
  • Margin
  • Surgery
  • Pathology