Skip to main content

Advertisement

Log in

Untapped “-omics”: the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

With the advent of next generation sequencing technologies, there is an increasingly complex understanding of the role of gastrointestinal and local breast microbial dysbiosis in breast cancer. In this review, we summarize the current understanding of the microbiome’s role in breast carcinogenesis, discussing modifiable risk factors that may affect breast cancer risk by inducing dysbiosis as well as recent sequencing data illustrating breast cancer subtype-specific differences in local breast tissue microbiota. We outline how the ‘estrobolome,’ the aggregate of estrogen-metabolizing enteric bacterial genes, may affect the risk of developing postmenopausal estrogen receptor–positive breast cancer. We also discuss the microbiome’s potent capacity for anticancer therapy activation and deactivation, an important attribute of the gastrointestinal microbiome that has yet to be harnessed clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

ER:

Estrogen receptor

GALT:

Gut-associated lymphoid tissue

HER2:

Human epidermal growth factor receptor-2

PARP:

Poly-ADP-ribose polymerase

PR:

Progesterone receptor

COX:

Cyclooxygenase

rRNA:

Ribosomal ribonucleic acid

References

  1. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  2. Blaser MJ, Kirschner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449(7164):843–849. https://doi.org/10.1038/nature06198

    Article  CAS  PubMed  Google Scholar 

  3. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449(7164):811–818. https://doi.org/10.1038/nature06245

    Article  CAS  PubMed  Google Scholar 

  4. Francescone R, Hou V, Grivennikov SI (2014) Microbiome, inflammation, and cancer. Cancer J 20(3):181–189. https://doi.org/10.1097/ppo.0000000000000048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yurkovetskiy LA, Pickard JM, Chervonsky AV (2015) Microbiota and autoimmunity: exploring new avenues. Cell Host Microbe 17(5):548–552. https://doi.org/10.1016/j.chom.2015.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan AA, Shrivastava A (1826) Khurshid M (2012) Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim Biophys Acta 2:331–337. https://doi.org/10.1016/j.bbcan.2012.05.005

    Article  CAS  Google Scholar 

  7. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17(4):840–862. https://doi.org/10.1128/cmr.17.4.840-862.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carlos N, Tang Y-W, Pei Z (2012) Pearls and pitfalls of genomics-based microbiome analysis. Emerg Microbes Infect 1(12):e45–e45. https://doi.org/10.1038/emi.2012.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Escobar-Zepeda A, Vera-Ponce de Leon A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348. https://doi.org/10.3389/fgene.2015.00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Peck KN, DeMichele AM, Alwine JC, Robertson ES (2018) Distinct microbial signatures associated with different breast cancer types. Front Microbiol 9:951. https://doi.org/10.3389/fmicb.2018.00951

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273. https://doi.org/10.1126/science.1223490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ivanov II, Honda K (2012) Intestinal commensal microbes as immune modulators. Cell Host Microbe 12(4):496–508. https://doi.org/10.1016/j.chom.2012.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McAleer JP, Kolls JK (2012) Maintaining poise: commensal microbiota calibrate interferon responses. Immunity 37(1):10–12. https://doi.org/10.1016/j.immuni.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  14. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970. https://doi.org/10.1126/science.1240527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN (2010) Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16(2):228–231. https://doi.org/10.1038/nm.2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113. https://doi.org/10.1038/nature07336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shapira I, Sultan K, Lee A, Taioli E (2013) Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. ISRN Oncol 2013:693920. https://doi.org/10.1155/2013/693920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmer S, Albergante L, Blackburn CC, Newman TJ (2018) Thymic involution and rising disease incidence with age. Proc Natl Acad Sci USA 115(8):1883–1888. https://doi.org/10.1073/pnas.1714478115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei B, Wingender G, Fujiwara D, Chen DY, McPherson M, Brewer S, Borneman J, Kronenberg M, Braun J (2010) Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 184(3):1218–1226. https://doi.org/10.4049/jimmunol.0902620

    Article  CAS  PubMed  Google Scholar 

  20. Mercier BC, Ventre E, Fogeron ML, Debaud AL, Tomkowiak M, Marvel J, Bonnefoy N (2012) NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells. PLoS ONE 7(7):e42170. https://doi.org/10.1371/journal.pone.0042170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227(1):106–128. https://doi.org/10.1111/j.1600-065X.2008.00734.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tilg H, Marchesi JR (2012) Too much fat for the gut’s microbiota. Gut 61(4):474–475. https://doi.org/10.1136/gutjnl-2011-301918

    Article  PubMed  Google Scholar 

  23. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3000322

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. https://doi.org/10.1016/j.cell.2009.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandquist A, Kolls J (2018) Update on regulation and effector functions of Th17 cells. F1000Res 7:205. https://doi.org/10.12688/f1000research.13020.1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shih VF, Cox J, Kljavin NM, Dengler HS, Reichelt M, Kumar P, Rangell L, Kolls JK, Diehl L, Ouyang W, Ghilardi N (2014) Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota. Proc Natl Acad Sci USA 111(38):13942–13947. https://doi.org/10.1073/pnas.1323852111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K, Blumenschein WM, Sukumar S, Haines CJ, Sadekova S, McClanahan TK, McGeachy MJ, O’Shea JJ, Cua DJ (2016) Interleukin-23-induced transcription factor blimp-1 promotes pathogenicity of T helper 17 Cells. Immunity 44(1):131–142. https://doi.org/10.1016/j.immuni.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  28. Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, Vikram A, Good M, Schoenborn AA, Bibby K, Montelaro RC, Metzger DW, Gulati AS, Kolls JK (2016) Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44(3):659–671. https://doi.org/10.1016/j.immuni.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cochaud S, Giustiniani J, Thomas C, Laprevotte E, Garbar C, Savoye A-M, Curé H, Mascaux C, Alberici G, Bonnefoy N, Eliaou J-F, Bensussan A, Bastid J (2013) IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Science 3:3456. https://doi.org/10.1038/srep03456

    Article  Google Scholar 

  30. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L, Marshall JR, Miller AB, Rohan T, Smith-Warner SA, Speizer FE, Willett WC, Wolk A, Hunter DJ (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152(6):514–527. https://doi.org/10.1093/aje/152.6.514

    Article  PubMed  Google Scholar 

  31. Krebs EE, Taylor BC, Cauley JA, Stone KL, Bowman PJ, Ensrud KE (2006) Measures of adiposity and risk of breast cancer in older postmenopausal women. J Am Geriatr Soc 54(1):63–69. https://doi.org/10.1111/j.1532-5415.2005.00541.x

    Article  PubMed  Google Scholar 

  32. Feigelson HS, Patel AV, Teras LR, Gansler T, Thun MJ, Calle EE (2006) Adult weight gain and histopathologic characteristics of breast cancer among postmenopausal women. Cancer 107(1):12–21. https://doi.org/10.1002/cncr.21965

    Article  PubMed  Google Scholar 

  33. Ahn J, Schatzkin A, Lacey JV Jr, Albanes D, Ballard-Barbash R, Adams KF, Kipnis V, Mouw T, Hollenbeck AR, Leitzmann MF (2007) Adiposity, adult weight change, and postmenopausal breast cancer risk. Arch Intern Med 167(19):2091–2102. https://doi.org/10.1001/archinte.167.19.2091

    Article  PubMed  Google Scholar 

  34. Keum N, Greenwood DC, Lee DH, Kim R, Aune D, Ju W, Hu FB, Giovannucci EL (2015) Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv088

    Article  PubMed  Google Scholar 

  35. Harris RE, Casto BC, Harris ZM (2014) Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol 5(4):677–692. https://doi.org/10.5306/wjco.v5.i4.677

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karmali RA, Marsh J (1985) Antitumor activity in a rat mammary adenocarcinoma: the effect of cyclooxygenase inhibitors and immunization against prostaglandin E2. Prostaglandins Leukot Med 20(3):283–286

    Article  CAS  PubMed  Google Scholar 

  37. Rose DP, Connolly JM (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther 83(3):217–244

    Article  CAS  PubMed  Google Scholar 

  38. Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2(4):356–365. https://doi.org/10.1158/2159-8290.Cd-11-0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 4(3):329–346. https://doi.org/10.1158/1940-6207.Capr-10-0381

    Article  CAS  Google Scholar 

  40. Zhao Y, Agarwal VR, Mendelson CR, Simpson ER (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137(12):5739–5742. https://doi.org/10.1210/endo.137.12.8940410

    Article  CAS  PubMed  Google Scholar 

  41. Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM (1999) Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140(1):27–35. https://doi.org/10.1016/S0304-3835(99)00050-6

    Article  CAS  PubMed  Google Scholar 

  42. Diaz-Cruz ES, Brueggemeier RW (2006) Interrelationships between cyclooxygenases and aromatase: unraveling the relevance of cyclooxygenase inhibitors in breast cancer. Anticancer Agents Med Chem 6(3):221–232

    Article  CAS  PubMed  Google Scholar 

  43. Bhattacharjee RN, Timoshenko AV, Cai J, Lala PK (2010) Relationship between cyclooxygenase-2 and human epidermal growth factor receptor 2 in vascular endothelial growth factor C up-regulation and lymphangiogenesis in human breast cancer. Cancer Sci 101(9):2026–2032. https://doi.org/10.1111/j.1349-7006.2010.01647.x

    Article  CAS  PubMed  Google Scholar 

  44. Bocca C, Ievolella M, Autelli R, Motta M, Mosso L, Torchio B, Bozzo F, Cannito S, Paternostro C, Colombatto S, Parola M, Miglietta A (2014) Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opin Ther Targets 18(2):121–135. https://doi.org/10.1517/14728222.2014.860447

    Article  CAS  PubMed  Google Scholar 

  45. Buchta Rosean C, Bostic RR, Ferey JCM, Feng TY, Azar FN, Tung KS, Dozmorov MG, Smirnova E, Bos PD, Rutkowski MR (2019) Preexisting commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res 79(14):3662–3675. https://doi.org/10.1158/0008-5472.Can-18-3464

    Article  PubMed  Google Scholar 

  46. Iyengar NM, Hudis CA, Dannenberg AJ (2015) Obesity and cancer: local and systemic mechanisms. Annu Rev Med 66:297–309. https://doi.org/10.1146/annurev-med-050913-022228

    Article  CAS  PubMed  Google Scholar 

  47. Castoldi A, Naffah de Souza C, Camara NO, Moraes-Vieira PM (2015) The macrophage switch in obesity development. Front Immunol 6:637. https://doi.org/10.3389/fimmu.2015.00637

    Article  CAS  PubMed  Google Scholar 

  48. Kohlgruber A, Lynch L (2015) Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr Diab Rep 15(11):92. https://doi.org/10.1007/s11892-015-0670-x

    Article  CAS  PubMed  Google Scholar 

  49. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3 K signaling pathway in cancer. Curr Opin Genet Dev 20(1):87–90. https://doi.org/10.1016/j.gde.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  50. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. https://doi.org/10.1038/nrm3025

    Article  CAS  PubMed  Google Scholar 

  51. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518. https://doi.org/10.1038/nrc1387

    Article  CAS  PubMed  Google Scholar 

  52. Lueprasitsakul P, Latour D, Longcope C (1990) Aromatase activity in human adipose tissue stromal cells: effect of growth factors. Steroids 55(12):540–544

    Article  CAS  PubMed  Google Scholar 

  53. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335. https://doi.org/10.1016/j.chom.2011.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR (2006) Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology 147(9):4132–4150. https://doi.org/10.1210/en.2006-0113

    Article  CAS  PubMed  Google Scholar 

  55. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19(1):1–27. https://doi.org/10.1093/carcin/19.1.1

    Article  PubMed  Google Scholar 

  56. Raftogianis R, Creveling C, Weinshilboum R, Weisz J (2000) Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr 27:113–124. https://doi.org/10.1093/oxfordjournals.jncimonographs.a024234

    Article  CAS  Google Scholar 

  57. Adlercreutz H, Martin F (1980) Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem 13(2):231–244

    Article  CAS  PubMed  Google Scholar 

  58. Adlercreutz H, Jarvenpaa P (1982) Assay of estrogens in human feces. J Steroid Biochem 17(6):639–645

    Article  CAS  PubMed  Google Scholar 

  59. Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P (2008) Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66(3):487–495. https://doi.org/10.1111/j.1574-6941.2008.00520.x

    Article  CAS  PubMed  Google Scholar 

  60. Gloux K, Berteau O, El Oumami H, Beguet F, Leclerc M, Dore J (2011) A metagenomic beta-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4539–4546. https://doi.org/10.1073/pnas.1000066107

    Article  PubMed  Google Scholar 

  61. Cole CB, Fuller R, Mallet AK, Rowland IR (1985) The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol 59(6):549–553

    Article  CAS  PubMed  Google Scholar 

  62. Gadelle D, Raibaud P, Sacquet E (1985) beta-Glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol 49(3):682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McIntosh FM, Maison N, Holtrop G, Young P, Stevens VJ, Ince J, Johnstone AM, Lobley GE, Flint HJ, Louis P (2012) Phylogenetic distribution of genes encoding beta-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 14(8):1876–1887. https://doi.org/10.1111/j.1462-2920.2012.02711.x

    Article  CAS  PubMed  Google Scholar 

  64. Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, Venkatesh M, Jobin C, Yeh LA, Mani S, Redinbo MR (2010) Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330(6005):831–835. https://doi.org/10.1126/science.1191175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA, Umetani M, Euhus DM, Xie Y, Shaul PW (2013) 27-Hydroxycholesterol promotes cell-autonomous. ER-positive breast cancer growth. Cell Rep 5(3):637–645. https://doi.org/10.1016/j.celrep.2013.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064. https://doi.org/10.1152/physrev.2001.81.3.1031

    Article  CAS  PubMed  Google Scholar 

  67. Hippe B, Zwielehner J, Liszt K, Lassl C, Unger F, Haslberger AG (2011) Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett 316(2):130–135. https://doi.org/10.1111/j.1574-6968.2010.02197.x

    Article  CAS  PubMed  Google Scholar 

  68. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101(4):541–550. https://doi.org/10.1017/s0007114508019880

    Article  CAS  PubMed  Google Scholar 

  69. Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ, Whelan K (2010) Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 104(5):693–700. https://doi.org/10.1017/s0007114510001030

    Article  CAS  PubMed  Google Scholar 

  70. Luu TH, Michel C, Bard J-M, Dravet F, Nazih H, Bobin-Dubigeon C (2017) Intestinal proportion of blautia sp is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer 69(2):267–275. https://doi.org/10.1080/01635581.2017.1263750

    Article  CAS  PubMed  Google Scholar 

  71. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32(11):1720–1724. https://doi.org/10.1038/ijo.2008.155

    Article  CAS  Google Scholar 

  72. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  73. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA 106(7):2365. https://doi.org/10.1073/pnas.0812600106

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ward HA, Kuhnle GG (2010) Phytoestrogen consumption and association with breast, prostate and colorectal cancer in EPIC Norfolk. Arch Biochem Biophys 501(1):170–175. https://doi.org/10.1016/j.abb.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  75. Milder IE, Kuijsten A, Arts IC, Feskens EJ, Kampman E, Hollman PC, Van ‘t Veer P (2007) Relation between plasma enterodiol and enterolactone and dietary intake of lignans in a Dutch endoscopy-based population. J Nutr 137(5):1266–1271. https://doi.org/10.1093/jn/137.5.1266

    Article  CAS  PubMed  Google Scholar 

  76. Cotterchio M, Boucher BA, Kreiger N, Mills CA, Thompson LU (2008) Dietary phytoestrogen intake–lignans and isoflavones–and breast cancer risk (Canada). Cancer Causes Control 19(3):259–272. https://doi.org/10.1007/s10552-007-9089-2

    Article  PubMed  Google Scholar 

  77. Zaineddin AK, Vrieling A, Buck K, Becker S, Linseisen J, Flesch-Janys D, Kaaks R, Chang-Claude J (2012) Serum enterolactone and postmenopausal breast cancer risk by estrogen, progesterone and herceptin 2 receptor status. Int J Cancer 130(6):1401–1410. https://doi.org/10.1002/ijc.26157

    Article  CAS  PubMed  Google Scholar 

  78. Kisiela M, Skarka A, Ebert B, Maser E (2012) Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J Steroid Biochem Mol Biol 129(1–2):31–46. https://doi.org/10.1016/j.jsbmb.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  79. Lombardi P, Goldin B, Boutin E, Gorbach SL (1978) Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem 9(8):795–801

    Article  CAS  PubMed  Google Scholar 

  80. Chen WY, Rosner B, Hankinson SE, Colditz GA, Willett WC (2011) Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA 306(17):1884–1890. https://doi.org/10.1001/jama.2011.1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dam MK, Hvidtfeldt UA, Tjonneland A, Overvad K, Gronbaek M, Tolstrup JS (2016) Five year change in alcohol intake and risk of breast cancer and coronary heart disease among postmenopausal women: prospective cohort study. BMJ 353:i2314. https://doi.org/10.1136/bmj.i2314

    Article  PubMed  PubMed Central  Google Scholar 

  82. Feigelson HS, Calle EE, Robertson AS, Wingo PA, Thun MJ (2001) Alcohol consumption increases the risk of fatal breast cancer (United States). Cancer Causes Control 12(10):895–902

    Article  CAS  PubMed  Google Scholar 

  83. Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Hennekens CH, Speizer FE (1987) Moderate alcohol consumption and the risk of breast cancer. N Engl J Med 316(19):1174–1180. https://doi.org/10.1056/nejm198705073161902

    Article  CAS  PubMed  Google Scholar 

  84. Lew JQ, Freedman ND, Leitzmann MF, Brinton LA, Hoover RN, Hollenbeck AR, Schatzkin A, Park Y (2009) Alcohol and risk of breast cancer by histologic type and hormone receptor status in postmenopausal women: the NIH-AARP Diet and Health Study. Am J Epidemiol 170(3):308–317. https://doi.org/10.1093/aje/kwp120

    Article  PubMed  PubMed Central  Google Scholar 

  85. Li CI, Chlebowski RT, Freiberg M, Johnson KC, Kuller L, Lane D, Lessin L, O’Sullivan MJ, Wactawski-Wende J, Yasmeen S, Prentice R (2010) Alcohol consumption and risk of postmenopausal breast cancer by subtype: the women’s health initiative observational study. J Natl Cancer Inst 102(18):1422–1431. https://doi.org/10.1093/jnci/djq316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deandrea S, Talamini R, Foschi R, Montella M, Dal Maso L, Falcini F, La Vecchia C, Franceschi S, Negri E (2008) Alcohol and breast cancer risk defined by estrogen and progesterone receptor status: a case-control study. Cancer Epidemiol Biomark Prev 17(8):2025–2028. https://doi.org/10.1158/1055-9965.Epi-08-0157

    Article  CAS  Google Scholar 

  87. Seitz HK, Stickel F (2010) Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 5(2):121–128. https://doi.org/10.1007/s12263-009-0154-1

    Article  CAS  PubMed  Google Scholar 

  88. Brooks PJ, Theruvathu JA (2005) DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 35(3):187–193. https://doi.org/10.1016/j.alcohol.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki R, Orsini N, Mignone L, Saji S, Wolk A (2008) Alcohol intake and risk of breast cancer defined by estrogen and progesterone receptor status–a meta-analysis of epidemiological studies. Int J Cancer 122(8):1832–1841. https://doi.org/10.1002/ijc.23184

    Article  CAS  PubMed  Google Scholar 

  90. Dorgan JF, Baer DJ, Albert PS, Judd JT, Brown ED, Corle DK, Campbell WS, Hartman TJ, Tejpar AA, Clevidence BA, Giffen CA, Chandler DW, Stanczyk FZ, Taylor PR (2001) Serum hormones and the alcohol-breast cancer association in postmenopausal women. J Natl Cancer Inst 93(9):710–715. https://doi.org/10.1093/jnci/93.9.710

    Article  CAS  PubMed  Google Scholar 

  91. Hankinson SE, Willett WC, Manson JE, Hunter DJ, Colditz GA, Stampfer MJ, Longcope C, Speizer FE (1995) Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer Inst 87(17):1297–1302. https://doi.org/10.1093/jnci/87.17.1297

    Article  CAS  PubMed  Google Scholar 

  92. Muti P, Trevisan M, Micheli A, Krogh V, Bolelli G, Sciajno R, Schunemann HJ, Berrino F (1998) Alcohol consumption and total estradiol in premenopausal women. Cancer Epidemiol Biomark Prev 7(3):189–193

    CAS  Google Scholar 

  93. Reichman ME, Judd JT, Longcope C, Schatzkin A, Clevidence BA, Nair PP, Campbell WS, Taylor PR (1993) Effects of alcohol consumption on plasma and urinary hormone concentrations in premenopausal women. J Natl Cancer Inst 85(9):722–727. https://doi.org/10.1093/jnci/85.9.722

    Article  CAS  PubMed  Google Scholar 

  94. Seitz HK, Maurer B (2007) The relationship between alcohol metabolism, estrogen levels, and breast cancer risk. Alcohol Res Health 30(1):42–43

    PubMed  Google Scholar 

  95. Ginsburg ES, Mello NK, Mendelson JH, Barbieri RL, Teoh SK, Rothman M, Gao X, Sholar JW (1996) Effects of alcohol ingestion on estrogens in postmenopausal women. JAMA 276(21):1747–1751. https://doi.org/10.1001/jama.1996.03540210055034

    Article  CAS  PubMed  Google Scholar 

  96. Fan S, Meng Q, Gao B, Grossman J, Yadegari M, Goldberg ID, Rosen EM (2000) Alcohol stimulates estrogen receptor signaling in human breast cancer cell lines. Cancer Res 60(20):5635–5639

    CAS  PubMed  Google Scholar 

  97. Singletary KW, Frey RS, Yan W (2001) Effect of ethanol on proliferation and estrogen receptor-alpha expression in human breast cancer cells. Cancer Lett 165(2):131–137

    Article  CAS  PubMed  Google Scholar 

  98. Yan AW, Fouts DE, Brandl J, Starkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA, Schnabl B (2011) Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53(1):96–105. https://doi.org/10.1002/hep.24018

    Article  CAS  PubMed  Google Scholar 

  99. Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P (2009) Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 33(10):1836–1846. https://doi.org/10.1111/j.1530-0277.2009.01022.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bode JC, Bode C, Heidelbach R, Durr HK, Martini GA (1984) Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology 31(1):30–34

    CAS  PubMed  Google Scholar 

  101. Casafont Morencos F, de las Heras Castano G, Martin Ramos L, Lopez Arias MJ, Ledesma F, Pons Romero F (1996) Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Dig Dis Sci 41(3):552–556

    Article  CAS  PubMed  Google Scholar 

  102. Xie G, Zhong W, Zheng X, Li Q, Qiu Y, Li H, Chen H, Zhou Z, Jia W (2013) Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res 12(7):3297–3306. https://doi.org/10.1021/pr400362z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhu BT, Bui QD, Weisz J, Liehr JG (1994) Conversion of estrone to 2- and 4-hydroxyestrone by hamster kidney and liver microsomes: implications for the mechanism of estrogen-induced carcinogenesis. Endocrinology 135(5):1772–1779. https://doi.org/10.1210/endo.135.5.7956900

    Article  CAS  PubMed  Google Scholar 

  104. Hamalainen E, Korpela JT, Adlercreutz H (1987) Effect of oxytetracycline administration on intestinal metabolism of oestrogens and on plasma sex hormones in healthy men. Gut 28(4):439–445. https://doi.org/10.1136/gut.28.4.439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Martin F, Peltonen J, Laatikainen T, Pulkkinen M, Adlercreutz H (1975) Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem 6(9):1339–1346

    Article  CAS  PubMed  Google Scholar 

  106. Adlercreutz H, Martin F, Pulkkinen M, Dencker H, Rimer U, Sjoberg NO, Tikkanen MJ (1976) Intestinal metabolism of estrogens. J Clin Endocrinol Metab 43(3):497–505. https://doi.org/10.1210/jcem-43-3-497

    Article  CAS  PubMed  Google Scholar 

  107. Adlercreutz H, Martin F, Tikkanen MJ, Pulkkinen M (1975) Effect of ampicillin administration on the excretion of twelve oestrogens in pregnancy urine. Acta Endocrinol (Copenh) 80(3):551–557

    Article  CAS  Google Scholar 

  108. Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH (2004) Antibiotic use in relation to the risk of breast cancer. JAMA 291(7):827–835. https://doi.org/10.1001/jama.291.7.827

    Article  CAS  PubMed  Google Scholar 

  109. Boursi B, Mamtani R, Haynes K, Yang YX (2015) Recurrent antibiotic exposure may promote cancer formation–Another step in understanding the role of the human microbiota? Eur J Cancer 51(17):2655–2664. https://doi.org/10.1016/j.ejca.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  110. Friedman GD, Oestreicher N, Chan J, Quesenberry CP Jr, Udaltsova N, Habel LA (2006) Antibiotics and risk of breast cancer: up to 9 years of follow-up of 2.1 million women. Cancer Epidemiol Biomark Prev 15(11):2102–2106. https://doi.org/10.1158/1055-9965.epi-06-0401

    Article  CAS  Google Scholar 

  111. Knekt P, Adlercreutz H, Rissanen H, Aromaa A, Teppo L, Heliovaara M (2000) Does antibacterial treatment for urinary tract infection contribute to the risk of breast cancer? Br J Cancer 82(5):1107–1110. https://doi.org/10.1054/bjoc.1999.1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Garcia Rodriguez LA, Gonzalez-Perez A (2005) Use of antibiotics and risk of breast cancer. Am J Epidemiol 161(7):616–619. https://doi.org/10.1093/aje/kwi087

    Article  CAS  PubMed  Google Scholar 

  113. Sergentanis TN, Zagouri F, Zografos GC (2010) Is antibiotic use a risk factor for breast cancer? A meta-analysis. Pharmacoepidemiol Drug Saf 19(11):1101–1107. https://doi.org/10.1002/pds.1986

    Article  PubMed  Google Scholar 

  114. Kirkup B, McKee A, Makin K, Paveley J, Caim S, Alcon-Giner C, Leclaire C, Dalby M, Le Gall G, Andrusaite A, Kreuzaler P, Driscoll P, MacRae J, Calvani E, Ghanate A, Milling S, Yuneva M, Weilbaecher K, Korcsmaros T, Hall LJ, Robinson SD (2019) Perturbation of the gut microbiota by antibiotics results in accelerated breast tumour growth and metabolic dysregulation. bioRxiv. https://doi.org/10.1101/553602

    Article  Google Scholar 

  115. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7 Suppl):2485s–2493s. https://doi.org/10.1093/jn/133.7.2485S

    Article  CAS  PubMed  Google Scholar 

  116. Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N, Tavakoli-Yaraki M (2017) Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis 16(1):208. https://doi.org/10.1186/s12944-017-0593-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  118. Kennedy BM, Harris RE (2018) Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer. Inflammopharmacology 26(4):909–923. https://doi.org/10.1007/s10787-018-0489-6

    Article  CAS  Google Scholar 

  119. Liong YV, Hong GS, Teo JGC, Lim GH (2013) Breast ductal carcinoma in situ presenting as recurrent non-puerperal mastitis: case report and literature review. World J Surg Oncol 11(1):179. https://doi.org/10.1186/1477-7819-11-179

    Article  PubMed  PubMed Central  Google Scholar 

  120. Peters F, Kießlich A, Pahnke V (2002) Coincidence of nonpuerperal mastitis and noninflammatory breast cancer. Eur J Obstetr Gynecol Reprod Biol 105(1):59–63. https://doi.org/10.1016/S0301-2115(02)00109-4

    Article  Google Scholar 

  121. Oddó D, Domínguez F, Gómez N, Méndez GP, Navarro ME (2019) Granulomatous lobular mastitis associated with ductal carcinoma in situ of the breast. SAGE Open Med Case Rep. https://doi.org/10.1177/2050313x19836583

    Article  PubMed  PubMed Central  Google Scholar 

  122. Damiani S, Ludvikova M, Tomasic G, Bianchi S, Gown AM, Eusebi V (1999) Myoepithelial cells and basal lamina in poorly differentiated in situ duct carcinoma of the breast. Virchows Arch 434(3):227–234. https://doi.org/10.1007/s004280050332

    Article  CAS  PubMed  Google Scholar 

  123. Lambe M, Johansson ALV, Altman D, Eloranta S (2009) Mastitis and the risk of breast cancer. Epidemiology 20(5):747–751. https://doi.org/10.1097/EDE.0b013e3181adbb1e

    Article  PubMed  Google Scholar 

  124. Banerjee S, Wei Z, Tan F, Peck KN, Shih N, Feldman M, Rebbeck TR, Alwine JC, Robertson ES (2015) Distinct microbiological signatures associated with triple negative breast cancer. Science 5:15162. https://doi.org/10.1038/srep15162

    Article  CAS  Google Scholar 

  125. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ (2014) Microbial dysbiosis is associated with human breast cancer. PLoS ONE 9(1):e83744. https://doi.org/10.1371/journal.pone.0083744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chan AA, Bashir M, Rivas MN, Duvall K, Sieling PA, Pieber TR, Vaishampayan PA, Love SM, Lee DJ (2016) Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Science 6:28061. https://doi.org/10.1038/srep28061

    Article  CAS  Google Scholar 

  127. Meng S, Chen B, Yang J, Wang J, Zhu D, Meng Q, Zhang L (2018) Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy. Front Oncol 8:318. https://doi.org/10.3389/fonc.2018.00318

    Article  PubMed  PubMed Central  Google Scholar 

  128. Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, Scott L, O’Hanlon DM, Burton JP, Francis KP, Tangney M, Reid G (2014) Microbiota of human breast tissue. Appl Environ Microbiol 80(10):3007–3014. https://doi.org/10.1128/aem.00242-14

    Article  PubMed  PubMed Central  Google Scholar 

  129. Costantini L, Magno S, Albanese D, Donati C, Molinari R, Filippone A, Masetti R, Merendino N (2018) Characterization of human breast tissue microbiota from core needle biopsies through the analysis of multi hypervariable 16S-rRNA gene regions. Sci Rep 8(1):16893. https://doi.org/10.1038/s41598-018-35329-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baldwin DA, Feldman M, Alwine JC, Robertson ES (2014) Metagenomic assay for identification of microbial pathogens in tumor tissues. MBio 5(5):e01714. https://doi.org/10.1128/mBio.01714-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM (2017) Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 14(6):356–365. https://doi.org/10.1038/nrgastro.2017.20

    Article  CAS  PubMed  Google Scholar 

  132. Hussein MH, Schneider EK, Elliott AG, Han M, Reyes-Ortega F, Morris F, Blastovich MAT, Jasim R, Currie B, Mayo M, Baker M, Cooper MA, Li J, Velkov T (2017) From breast cancer to antimicrobial: combating extremely resistant gram-negative “superbugs” using novel combinations of polymyxin B with selective estrogen receptor modulators. Microb Drug Resist 23(5):640–650. https://doi.org/10.1089/mdr.2016.0196

    Article  CAS  PubMed  Google Scholar 

  133. Scott SA, Spencer CT, O’Reilly MC, Brown KA, Lavieri RR, Cho CH, Jung DI, Larock RC, Brown HA, Lindsley CW (2015) Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes. ACS Chem Biol 10(2):421–432. https://doi.org/10.1021/cb500828m

    Article  CAS  PubMed  Google Scholar 

  134. Ho Sui SJ, Lo R, Fernandes AR, Caulfield MD, Lerman JA, Xie L, Bourne PE, Baillie DL, Brinkman FS (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents 40(3):246–251. https://doi.org/10.1016/j.ijantimicag.2012.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gerits E, Defraine V, Vandamme K, De Cremer K, De Brucker K, Thevissen K, Cammue BP, Beullens S, Fauvart M, Verstraeten N, Michiels J (2017) Repurposing toremifene for treatment of oral bacterial infections. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.01846-16

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jacobs AC, Didone L, Jobson J, Sofia MK, Krysan D, Dunman PM (2013) Adenylate kinase release as a high-throughput-screening-compatible reporter of bacterial lysis for identification of antibacterial agents. Antimicrob Agents Chemother 57(1):26–36. https://doi.org/10.1128/aac.01640-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Luxo C, Jurado AS, Custodio JB, Madeira VM (2001) Toxic effects of tamoxifen on the growth and respiratory activity of Bacillus stearothermophilus. Toxicol In Vitro 15(4–5):303–305

    Article  CAS  PubMed  Google Scholar 

  138. McCann KE, Hurvitz SA (2018) Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 7:212540. https://doi.org/10.7573/dic.212540

    Article  PubMed  PubMed Central  Google Scholar 

  139. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, Wu W, Goessl C, Runswick S, Conte P (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533. https://doi.org/10.1056/NEJMoa1706450

    Article  CAS  PubMed  Google Scholar 

  140. Larmonier CB, Shehab KW, Laubitz D, Jamwal DR, Ghishan FK, Kiela PR (2016) Transcriptional reprogramming and resistance to colonic mucosal injury in poly(ADP-ribose) polymerase 1 (PARP1)-deficient mice. J Biol Chem 291(17):8918–8930. https://doi.org/10.1074/jbc.M116.714386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vida A, Kardos G, Kovacs T, Bodrogi BL, Bai P (2018) Deletion of poly(ADPribose) polymerase-1 changes the composition of the microbiome in the gut. Mol Med Rep 18(5):4335–4341. https://doi.org/10.3892/mmr.2018.9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Blum JL, Flynn PJ, Yothers G, Asmar L, Geyer CE Jr, Jacobs SA, Robert NJ, Hopkins JO, O’Shaughnessy JA, Dang CT, Gomez HL, Fehrenbacher L, Vukelja SJ, Lyss AP, Paul D, Brufsky AM, Jeong JH, Colangelo LH, Swain SM, Mamounas EP, Jones SE, Wolmark N (2017) Anthracyclines in early breast cancer: the ABC trials-USOR 06-090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol 35(23):2647–2655. https://doi.org/10.1200/jco.2016.71.4147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jasra S, Anampa J (2018) Anthracycline use for early stage breast cancer in the modern era: a review. Curr Treat Options Oncol 19(6):30. https://doi.org/10.1007/s11864-018-0547-8

    Article  PubMed  Google Scholar 

  144. Cox G, Koteva K, Wright GD (2014) An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. J Antimicrob Chemother 69(7):1844–1855. https://doi.org/10.1093/jac/dku057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yan A, Culp E, Perry J, Lau JT, MacNeil LT, Surette MG, Wright GD (2018) Transformation of the anticancer drug doxorubicin in the human gut microbiome. ACS Infect Dis 4(1):68–76. https://doi.org/10.1021/acsinfecdis.7b00166

    Article  CAS  PubMed  Google Scholar 

  146. McCarron AJ, Armstrong C, Glynn G, Millar BC, Rooney PJ, Goldsmith CE, Xu J, Moore JE (2012) Antibacterial effects on acinetobacter species of commonly employed antineoplastic agents used in the treatment of haematological malignancies: an in vitro laboratory evaluation. Br J Biomed Sci 69(1):14–17

    Article  CAS  PubMed  Google Scholar 

  147. Sandrini MP, Clausen AR, On SL, Aarestrup FM, Munch-Petersen B, Piskur J (2007) Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner. J Antimicrob Chemother 60(3):510–520. https://doi.org/10.1093/jac/dkm240

    Article  CAS  PubMed  Google Scholar 

  148. Sandrini MP, Shannon O, Clausen AR, Bjorck L, Piskur J (2007) Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria. Antimicrob Agents Chemother 51(8):2726–2732. https://doi.org/10.1128/aac.00081-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, Thaiss CA, Reuben A, Livny J, Avraham R, Frederick DT, Ligorio M, Chatman K, Johnston SE, Mosher CM, Brandis A, Fuks G, Gurbatri C, Gopalakrishnan V, Kim M, Hurd MW, Katz M, Fleming J, Maitra A, Smith DA, Skalak M, Bu J, Michaud M, Trauger SA, Barshack I, Golan T, Sandbank J, Flaherty KT, Mandinova A, Garrett WS, Thayer SP, Ferrone CR, Huttenhower C, Bhatia SN, Gevers D, Wargo JA, Golub TR, Straussman R (2017) Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357(6356):1156–1160. https://doi.org/10.1126/science.aah5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vande Voorde J, Sabuncuoglu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, Balzarini J, Liekens S (2014) Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 289(19):13054–13065. https://doi.org/10.1074/jbc.M114.558924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lehouritis P, Cummins J, Stanton M, Murphy CT, McCarthy FO, Reid G, Urbaniak C, Byrne WL, Tangney M (2015) Local bacteria affect the efficacy of chemotherapeutic drugs. Sci Rep 5:14554. https://doi.org/10.1038/srep14554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vanlancker E, Vanhoecke B, Smet R, Props R, Van de Wiele T (2016) 5-Fluorouracil sensitivity varies among oral micro-organisms. J Med Microbiol 65(8):775–783. https://doi.org/10.1099/jmm.0.000292

    Article  CAS  PubMed  Google Scholar 

  153. Singh V, Brecik M, Mukherjee R, Evans JC, Svetlikova Z, Blasko J, Surade S, Blackburn J, Warner DF, Mikusova K, Mizrahi V (2015) The complex mechanism of antimycobacterial action of 5-fluorouracil. Chem Biol 22(1):63–75. https://doi.org/10.1016/j.chembiol.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  154. Hamouda N, Sano T, Oikawa Y, Ozaki T, Shimakawa M, Matsumoto K, Amagase K, Higuchi K, Kato S (2017) Apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of 5-fluorouracil-induced intestinal mucositis in mice. Basic Clin Pharmacol Toxicol 121(3):159–168. https://doi.org/10.1111/bcpt.12793

    Article  CAS  PubMed  Google Scholar 

  155. Vonderheide RH, Domchek SM, Clark AS (2017) Immunotherapy for breast cancer: what are we missing? Clin Cancer Res 23(11):2640. https://doi.org/10.1158/1078-0432.CCR-16-2569

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089. https://doi.org/10.1126/science.aac4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084. https://doi.org/10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G (2016) The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82(16):5309–5348

    Article  Google Scholar 

Download references

Acknowledgements

Figures were created using BioRender.

Funding

No external funding or grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Pezo.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komorowski, A.S., Pezo, R.C. Untapped “-omics”: the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment. Breast Cancer Res Treat 179, 287–300 (2020). https://doi.org/10.1007/s10549-019-05472-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05472-w

Keywords

Navigation