Skip to main content

Advertisement

Log in

Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is the most common malignancy in women worldwide. Although important therapeutic progress was achieved over the past decade, this disease remains a public health problem. In light of precision medicine, the identification of new prognostic biomarkers in breast cancer is urgently needed to stratify populations of patients with poor clinical outcome who may benefit from new personalized therapies. The microtubule cytoskeleton plays a pivotal role in essential cellular functions and is an interesting target for cancer therapy. Microtubule assembly and dynamics are regulated by a wide range of microtubule-associated proteins (MAPs), some of which have oncogenic or tumor suppressor effects in breast cancer.

Results

This review covers current knowledge on microtubule-associated tumor suppressors (MATS) in breast cancer and their potential value as prognostic biomarkers. We present recent studies showing that combinatorial expression of ATIP3 and EB1, two microtubule-associated biomarkers with tumor suppressor and oncogenic effects, respectively, improves breast cancer prognosis compared to each biomarker alone.

Conclusions

These findings are discussed regarding the increasing complexity of protein networks composed of MAPs that coordinate microtubule dynamics and functions. Further studies are warranted to evaluate the prognostic value of combined expression of different MATS and their interacting partners in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Harbeck N, Gnant M (2017) Breast cancer. Lancet 389:1134–1150

    PubMed  Google Scholar 

  2. Falco M, Palma G, Rea D, De Biase D, Scala S, D’Aiuto M et al (2016) Tumour biomarkers: homeostasis as a novel prognostic indicator. Open Biol. https://doi.org/10.1098/rsob.160254

    Article  PubMed  PubMed Central  Google Scholar 

  3. André F, Bachelot T, Commo F, Campone M, Arnedos M, Dieras V et al (2014) Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol 15:267–274

    PubMed  Google Scholar 

  4. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N et al (2019) Genomic characterization of metastatic breast cancers. Nature 569:560–564

    CAS  PubMed  Google Scholar 

  5. Low SK, Zembutsu H, Nakamura Y (2018) Breast cancer: the translation of big genomic data to cancer precision medicine. Cancer Sci 109:497–506

    CAS  PubMed  Google Scholar 

  6. Bettaieb A, Paul C, Plenchette S, Shan J, Chouchane L, Ghiringhelli F (2017) Precision medicine in breast cancer: reality or utopia? J Transl Med 15:139

    PubMed  PubMed Central  Google Scholar 

  7. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726

    CAS  PubMed  Google Scholar 

  8. Jiang K, Toedt G, Montenegro Gouveia S, Davey NE, Hua S, van der Vaart B et al (2012) A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr Biol 22:1800–1807

    CAS  PubMed  Google Scholar 

  9. Martin M, Akhmanova A (2018) Coming into focus: mechanisms of microtubule minus-end organization. Trends Cell Biol 28:574–588

    CAS  PubMed  Google Scholar 

  10. Sung M, Giannakakou P (2014) BRCA1 regulates microtubule dynamics and taxane-induced apoptotic cell signaling. Oncogene 33:1418–1428

    CAS  PubMed  Google Scholar 

  11. Hsu LC, White RL (1998) BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA 95:12983–12988

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lotti LV, Ottini L, D’Amico C, Gradini R, Cama A, Belleudi F et al (2002) Subcellular localization of the BRCA1 gene product in mitotic cells. Genes Chromosomes Cancer 35:193–203

    CAS  PubMed  Google Scholar 

  13. Louie RK, Bahmanyar S, Siemers KA, Votin V, Chang P, Stearns T et al (2004) Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J Cell Sci 117(Pt 7):1117–1128

    CAS  PubMed  Google Scholar 

  14. Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H et al (2009) 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS ONE 4(10):e7239

    PubMed  PubMed Central  Google Scholar 

  15. Liu L, Tommasi S, Lee DH, Dammann R, Pfeifer GP (2003) Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22:8125–8136

    CAS  PubMed  Google Scholar 

  16. Rong R, Jin W, Zhang J, Sheikh MS, Huang Y (2004) Tumor suppressor RASSF1A is a microtubule-binding protein that stabilizes microtubules and induces G2/M arrest. Oncogene 23:8216–8230

    CAS  PubMed  Google Scholar 

  17. Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P et al (2009) VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 11:994–1001

    CAS  PubMed  Google Scholar 

  18. Morrison EE (2009) The APC-EB1 interaction. Adv Exp Med Biol 656:41–50

    CAS  PubMed  Google Scholar 

  19. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H et al (2009) An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–376

    CAS  PubMed  Google Scholar 

  20. Slep KC, Rogers SL, Elliott SL, Ohkura H, Kolodziej PA, Vale RD (2005) Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J Cell Biol 168:587–598

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cohen-Dvashi H, Ben-Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S et al (2015) Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med 7:299–314

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao J, Huo L, Sun X, Liu M, Li D, Dong JT et al (2008) The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J Biol Chem 283:8802–8809

    CAS  PubMed  Google Scholar 

  23. Munemitsu S, Souza B, Müller O, Albert I, Rubinfeld B, Polakis P (1994) The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res 54:3676–3681

    CAS  PubMed  Google Scholar 

  24. Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ (2007) The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci USA 104:8869–8874

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishii H, Vecchione A, Murakumo Y, Baldassarre G, Numata S, Trapasso F et al (2001) FEZ1/LZTS1 gene at 8p22 suppresses cancer cell growth and regulates mitosis. Proc Natl Acad Sci USA 98:10374–10379

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Muranen T, Grönholm M, Lampin A, Lallemand D, Zhao F, Giovannini M et al (2007) The tumor suppressor merlin interacts with microtubules and modulates Schwann cell microtubule cytoskeleton. Hum Mol Genet 16:1742–1751

    CAS  PubMed  Google Scholar 

  27. Molina A, Velot L, Ghouinem L, Abdelkarim M, Bouchet BP, Luissint AC (2013) ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res 73:2905–2915

    CAS  PubMed  Google Scholar 

  28. Smole Z, Thoma CR, Applegate KT, Duda M, Gutbrodt KL, Danuser G et al (2014) Tumor suppressor NF2/Merlin is a microtubule stabilizer. Cancer Res 74:353–362

    CAS  PubMed  Google Scholar 

  29. Chaudhuri AR, Khan IA, Prasad V, Robinson AK, Ludueña RF, Barnes LD (1999) The tumor suppressor protein Fhit. A novel interaction with tubulin. J Biol Chem 274:24378–24382

    CAS  PubMed  Google Scholar 

  30. Ho KY, Kalle WH, Lo TH, Lam WY, Tang CM (1999) Reduced expression of APC and DCC gene protein in breast cancer. Histopathology 35:249–256

    CAS  PubMed  Google Scholar 

  31. Rakha EA, El-Sheikh SE, Kandil MA, El-Sayed ME, Green AR, Ellis IO (2008) Expression of BRCA1 protein in breast cancer and its prognostic significance. Hum Pathol 39:857–865

    CAS  PubMed  Google Scholar 

  32. Hayashi M, Jono H, Shinriki S, Nakamura T, Guo J, Sueta A et al (2014) Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Res Treat 143:447–457

    CAS  PubMed  Google Scholar 

  33. Campiglio M, Pekarsky Y, Menard S, Tagliabue E, Pilotti S, Croce CM (1999) FHIT loss of function in human primary breast cancer correlates with advanced stage of the disease. Cancer Res 59:3866–3869

    CAS  PubMed  Google Scholar 

  34. Lovat F, Ishii H, Schiappacassi M, Fassan M, Barbareschi M, Galligioni E et al (2014) LZTS1 downregulation confers paclitaxel resistance and is associated with worse prognosis in breast cancer. Oncotarget 5:970–977

    PubMed  Google Scholar 

  35. Morrow KA, Das S, Metge BJ, Ye K, Mulekar MS, Tucker JA et al (2011) Loss of tumor suppressor Merlin in advanced breast cancer is due to post-translational regulation. J Biol Chem 286:40376–40385

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hagrass HA, Pasha HF, Shaheen MA, Abdel Bary EH, Kassem R (2014) Methylation status and protein expression of RASSF1A in breast cancer patients. Mol Biol Rep 41:57–65

    CAS  PubMed  Google Scholar 

  37. Zia MK, Rmali KA, Watkins G, Mansel RE, Jiang WG (2007) The expression of the von Hippel-Lindau gene product and its impact on invasiveness of human breast cancer cells. Int J Mol Med 20:605–611

    CAS  PubMed  Google Scholar 

  38. Hu D, Zhou Z, Davidson NE, Huang Y, Wan Y (2012) Novel insight into KLF4 proteolytic regulation in estrogen receptor signaling and breast carcinogenesis. J Biol Chem 287:13584–13597

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT et al (2001) Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res 7:1998–2004

    CAS  PubMed  Google Scholar 

  40. Yang Q, Nakamura M, Nakamura Y, Yoshimura G, Suzuma T, Umemura T et al (2002) Two-hit inactivation of FHIT by loss of heterozygosity and hypermethylation in breast cancer. Clin Cancer Res 8:2890–2893

    CAS  PubMed  Google Scholar 

  41. Chen L, Zhu Z, Sun X, Dong XY, Wei J, Gu F et al (2009) Down-regulation of tumor suppressor gene FEZ1/LZTS1 in breast carcinoma involves promoter methylation and associates with metastasis. Breast Cancer Res Treat 116:471–478

    CAS  PubMed  Google Scholar 

  42. Rosen EM, Fan S, Pestell RG, Goldberg ID (2003) BRCA1 gene in breast cancer. J Cell Physiol 196:19–41

    CAS  PubMed  Google Scholar 

  43. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J et al (2014) Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 33:679–689

    CAS  PubMed  Google Scholar 

  44. Song H, Li D, Wu T, Xie D, Hua K, Hu J et al (2018) MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep 51:602–607

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hou X, Niu Z, Liu L, Guo Q, Li H, Yang X et al (2019) miR-1207-5p regulates the sensitivity of triple-negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol Lett 17:990–998

    CAS  PubMed  Google Scholar 

  46. Huszno J, Kołosza Z, Grzybowska E (2019) BRCA1 mutation in breast cancer patients: analysis of prognostic factors and survival. Oncol Lett 17:1986–1995

    CAS  PubMed  Google Scholar 

  47. Ginestier C, Bardou VJ, Popovici C, Charafe-Jauffret E, Bertucci F, Geneix J et al (2003) Loss of FHIT protein expression is a marker of adverse evolution in good prognosis localized breast cancer. Int J Cancer 107:854–862

    CAS  PubMed  Google Scholar 

  48. Martins AT, Monteiro P, Ramalho-Carvalho J, Costa VL, Dinis-Ribeiro M, Leal C et al (2011) High RASSF1A promoter methylation levels are predictive of poor prognosis in fine-needle aspirate washings of breast cancer lesions. Breast Cancer Res Treat 129:1–9

    CAS  PubMed  Google Scholar 

  49. Di Benedetto M, Bièche I, Deshayes F, Vacher S, Nouet S, Collura V et al (2006) Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. Gene 380:127–136

    PubMed  Google Scholar 

  50. Rodrigues-Ferreira S, Nahmias C (2010) An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends Endocrinol Metab 21:684–690

    CAS  PubMed  Google Scholar 

  51. Gupta GD, Coyaud É, Gonçalves J, Mojarad A, Liu Y, Wu Q et al (2015) Dynamic protein interaction landscape of the human centrosome–cilium interface. Cell 163:1484–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Velot L, Molina A, Rodrigues-Ferreira S, Nehlig A, Bouchet BP, Morel M et al (2015) Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget 6:43557–43570

    PubMed  PubMed Central  Google Scholar 

  53. Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C (2017) Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 74:2381–2393

    CAS  PubMed  Google Scholar 

  54. Dong X, Liu F, Sun L, Liu M, Li D, Su D et al (2010) Oncogenic function of microtubule end-binding protein 1 in breast cancer. J Pathol 220:361–369

    CAS  PubMed  Google Scholar 

  55. Rodrigues-Ferreira S, Nehlig A, Monchecourt C, Nasr S, Fuhrmann L, Lacroix-Triki M et al (2019) Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast Cancer Res Treat 173:573–583

    CAS  PubMed  Google Scholar 

  56. Almeida TB, Carnell AJ, Barsukov IL, Berry NG (2017) Targeting SxIP-EB1 interaction: an integrated approach to the discovery of small molecule modulators of dynamic binding sites. Sci Rep 7:15533

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M et al (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6:820–830

    CAS  PubMed  Google Scholar 

  58. Green RA, Wollman R, Kaplan KB (2005) APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell 16:4609–4622

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li D, Gao J, Yang Y, Sun L, Suo S, Luo Y et al (2014) CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle 13:974–983

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Silva Soares EW, de Lima Santos SC, Bueno AG, Cavalli IJ, Cavalli LR, Fouto Matias JE et al (2010) Concomitant loss of heterozygosity at the BRCA1 and FHIT genes as a prognostic factor in sporadic breast cancer. Cancer Genet Cytogenet 199:24–30

    CAS  PubMed  Google Scholar 

Download references

Funding

This work has been funded by Gustave Roussy Cancer Center, the ANR Grant MMO ANR-10-IBHU-0001, the Comité Ile-de-France of the Ligue Nationale contre le Cancer, the Ligue contre le Cancer 94/Val-de-Marne, the Entreprises contre le cancer (GEFLUC) Ile-de-France, the Fondation ARC pour la recherche contre le cancer, the CNRS, the INSERM, the Fondation Janssen Horizon, the Fonds de Dotation Agnès b., the association Odyssea and Prolific.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Nahmias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues-Ferreira, S., Molina, A. & Nahmias, C. Microtubule-associated tumor suppressors as prognostic biomarkers in breast cancer. Breast Cancer Res Treat 179, 267–273 (2020). https://doi.org/10.1007/s10549-019-05463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05463-x

Keywords

Navigation