Skip to main content

Advertisement

Log in

CDC20 expression in oestrogen receptor positive breast cancer predicts poor prognosis and lack of response to endocrine therapy

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Endocrine therapy is the standard treatment for oestrogen receptor positive (ER+) breast cancer. Despite its efficacy, around half of patients will develop resistance to this treatment and eventually relapse. Identification of effective and reliable biomarkers to predict the efficacy of endocrine therapy is of crucial importance in the management of ER+ breast cancer. Emerging evidence has revealed that the cell division regulator CDC20 exhibits an oncogenic function and plays important roles in tumourigenesis and progression of solid tumours. In this study, we investigated the prognostic and predictive role of CDC20 in early ER+ breast cancer patients.

Methods

The biological and clinical impact of CDC20 expression was assessed in large clinical annotated cohort of ER+ breast cancer with long-term follow-up at the mRNA level, using METABRIC and KM-Plotter datasets, and the protein level using immunohistochemistry on patients presenting at Nottingham. CDC20 expression was correlated with clinico-pathological parameters, molecular subtypes, clinical outcome and efficacy of endocrine therapy.

Results

High CDC20 mRNA expression was associated with poor clinico-pathological parameters including large tumour size and high tumour grade (P < 0.0001) in patients with ER+ breast cancer. High CDC20 mRNA expression was significantly associated with poor patient outcome (P < 0.0001). Importantly, high CDC20 expression was correlated with poor response to endocrine treatment in patients who treated with hormonal therapy only (P < 0.01). In multivariate analysis, CDC20 mRNA was an independent predictor of poor clinical outcome after treatment with endocrine therapy (P = 0.02).

Conclusion

CDC20 is a candidate biomarker for a subgroup of ER+ breast cancer characterised by poor clinical outcome. This study shows that the CDC20 could act as potential predictive biomarker of poor response to endocrine therapy in ER+ breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  2. Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, Nicholson RI, Lee AH, Robertson JF, Ellis IO (2007) Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol 25(30):4772–4778. https://doi.org/10.1200/jco.2007.12.2747

    Article  PubMed  Google Scholar 

  3. Dawson SJ, Rueda OM, Aparicio S, Caldas C (2013) A new genome-driven integrated classification of breast cancer and its implications. The EMBO J 32(5):617–628. https://doi.org/10.1038/emboj.2013.19

    Article  CAS  PubMed  Google Scholar 

  4. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. https://doi.org/10.1038/nrc2713

    Article  CAS  PubMed  Google Scholar 

  5. Group EBCTC (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–1717. https://doi.org/10.1016/S0140-6736(05)66544-0

    Article  CAS  Google Scholar 

  6. Early Breast Cancer Trialists’ Collaborative G (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784. https://doi.org/10.1016/S0140-6736(11)60993-8

    Article  CAS  Google Scholar 

  7. Weinstein J (1997) Cell cycle-regulated expression, phosphorylation, and degradation of p55Cdc. A mammalian homolog of CDC20/Fizzy/slp1. J Biol Chem 272(45):28501–28511

    Article  CAS  Google Scholar 

  8. Weinstein J, Jacobsen FW, Hsu-Chen J, Wu T, Baum LG (1994) A novel mammalian protein, p55CDC, present in dividing cells is associated with protein kinase activity and has homology to the Saccharomyces cerevisiae cell division cycle proteins Cdc20 and Cdc4. Mol Cell Biol 14(5):3350–3363

    Article  CAS  Google Scholar 

  9. Mondal G, Sengupta S, Panda CK, Gollin SM, Saunders WS, Roychoudhury S (2007) Overexpression of Cdc20 leads to impairment of the spindle assembly checkpoint and aneuploidization in oral cancer. Carcinogenesis 28(1):81–92. https://doi.org/10.1093/carcin/bgl100

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Wan L, Zhong J, Inuzuka H, Liu P, Sarkar FH, Wei W (2013) Cdc20: a potential novel therapeutic target for cancer treatment. Curr Pharm Des 19(18):3210–3214

    Article  CAS  Google Scholar 

  11. Ouellet V, Guyot MC, Le Page C, Filali-Mouhim A, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM (2006) Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer 119(3):599–607. https://doi.org/10.1002/ijc.21902

    Article  CAS  PubMed  Google Scholar 

  12. Kim JM, Sohn HY, Yoon SY, Oh JH, Yang JO, Kim JH, Song KS, Rho SM, Yoo HS, Kim YS, Kim JG, Kim NS (2005) Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. Clin Cancer Res 11(2 Pt 1):473–482

    PubMed  Google Scholar 

  13. Rajkumar T, Sabitha K, Vijayalakshmi N, Shirley S, Bose MV, Gopal G, Selvaluxmy G (2011) Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer 11:80. https://doi.org/10.1186/1471-2407-11-80

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang DZ, Ma Y, Ji B, Liu Y, Hwu P, Abbruzzese JL, Logsdon C, Wang H (2012) Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J Hematol Oncol 5:15–15. https://doi.org/10.1186/1756-8722-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu W-j, Hu K-s, Wang D-s, Zeng Z-l, Zhang D-s, Chen D-l, Bai L, Xu R-h (2013) CDC20 overexpression predicts a poor prognosis for patients with colorectal cancer. J Transl Med 11:142–142. https://doi.org/10.1186/1479-5876-11-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kato T, Daigo Y, Aragaki M, Ishikawa K, Sato M, Kaji M (2012) Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. J Surg Oncol 106(4):423–430. https://doi.org/10.1002/jso.23109

    Article  CAS  PubMed  Google Scholar 

  17. Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K, Gabrielson E (2006) Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12(2):405–410. https://doi.org/10.1158/1078-0432.ccr-05-0903

    Article  CAS  PubMed  Google Scholar 

  18. Karra H, Repo H, Ahonen I, Löyttyniemi E, Pitkänen R, Lintunen M, Kuopio T, Söderström M, Kronqvist P (2014) Cdc20 and securin overexpression predict short-term breast cancer survival. Br J Cancer 110(12):2905–2913. https://doi.org/10.1038/bjc.2014.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. https://doi.org/10.1038/nature10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123(3):725–731. https://doi.org/10.1007/s10549-009-0674-9

    Article  CAS  Google Scholar 

  21. Jezequel P, Campone M, Gouraud W, Guerin-Charbonnel C, Leux C, Ricolleau G, Campion L (2012) bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat 131(3):765–775. https://doi.org/10.1007/s10549-011-1457-7

    Article  PubMed  Google Scholar 

  22. Alfarsi LH, Elansari R, Toss MS, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR (2019) Kinesin family member-18A (KIF18A) is a predictive biomarker of poor benefit from endocrine therapy in early ER+ breast cancer. Breast Cancer Res Treat 173(1):93–102. https://doi.org/10.1007/s10549-018-4978-5

    Article  CAS  PubMed  Google Scholar 

  23. Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF, Macmillan D, Blamey RW, Ellis IO (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116(3):340–350. https://doi.org/10.1002/ijc.21004

    Article  CAS  PubMed  Google Scholar 

  24. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses: Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109(8):716–721

    PubMed  Google Scholar 

  25. Clarke R, Tyson JJ, Dixon JM (2015) Endocrine resistance in breast cancer–an overview and update. Molecular and cellular endocrinology 418(Pt 3):220–234. https://doi.org/10.1016/j.mce.2015.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wasch R, Engelbert D (2005) Anaphase-promoting complex-dependent proteolysis of cell cycle regulators and genomic instability of cancer cells. Oncogene 24(1):1–10. https://doi.org/10.1038/sj.onc.1208017

    Article  CAS  PubMed  Google Scholar 

  27. Taniguchi K, Momiyama N, Ueda M, Matsuyama R, Mori R, Fujii Y, Ichikawa Y, Endo I, Togo S, Shimada H (2008) Targeting of CDC20 via small interfering RNA causes enhancement of the cytotoxicity of chemoradiation. Anticancer Res 28(3a):1559–1563

    CAS  PubMed  Google Scholar 

  28. Li J, Gao JZ, Du JL, Huang ZX, Wei LX (2014) Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol 45(4):1547–1555. https://doi.org/10.3892/ijo.2014.2559

    Article  CAS  PubMed  Google Scholar 

  29. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F (2017) Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 75:284–298. https://doi.org/10.1016/j.ejca.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  30. Alfarsi L, Johnston S, Liu DX, Rakha E, Green A (2018) Current issues with luminal subtype classification in terms of prediction of benefit from endocrine therapy in early breast cancer. Histopathology. https://doi.org/10.1111/his.13523

    Article  PubMed  Google Scholar 

  31. Gray RG, Rea D, Handley K, Bowden SJ, Perry P, Earl HM, Poole CJ, Bates T, Chetiyawardana S, Dewar JA, Fernando IN, Grieve R, Nicoll J, Rayter Z, Robinson A, Salman A, Yarnold J, Bathers S, Marshall A, Lee M, Group obota C (2013) aTTom: long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years in 6,953 women with early breast cancer. J Clin Oncol 31(18_suppl):5–5. https://doi.org/10.1200/jco.2013.31.18_suppl.5

    Article  Google Scholar 

  32. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Medeiros Alencar VH, Badran A, Bonfill X, Bradbury J, Clarke M, Collins R, Davis SR, Delmestri A, Forbes JF, Haddad P, Hou MF, Inbar M, Khaled H, Kielanowska J, Kwan WH, Mathew BS, Mittra I, Muller B, Nicolucci A, Peralta O, Pernas F, Petruzelka L, Pienkowski T, Radhika R, Rajan B, Rubach MT, Tort S, Urrutia G, Valentini M, Wang Y, Peto R (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet (London, England) 381(9869):805–816. https://doi.org/10.1016/s0140-6736(12)61963-1

    Article  CAS  Google Scholar 

  33. van Hellemond IEG, Geurts SME, Tjan-Heijnen VCG (2018) Current status of extended adjuvant endocrine therapy in early stage breast cancer. Curr Treat Options Oncol 19(5):26–26. https://doi.org/10.1007/s11864-018-0541-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Atkins D, Reiffen KA, Tegtmeier CL, Winther H, Bonato MS, Storkel S (2004) Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 52(7):893–901. https://doi.org/10.1369/jhc.3A6195.2004

    Article  CAS  PubMed  Google Scholar 

  35. Press MF, Hung G, Godolphin W, Slamon DJ (1994) Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Can Res 54(10):2771–2777

    CAS  Google Scholar 

  36. Saxby AJ, Nielsen A, Scarlett CJ, Clarkson A, Morey A, Gill A, Smith RC (2005) Assessment of HER-2 status in pancreatic adenocarcinoma: correlation of immunohistochemistry, quantitative real-time RT-PCR, and FISH with aneuploidy and survival. Am J Surg Pathol 29(9):1125–1134

    Article  Google Scholar 

  37. Stark AM, Pfannenschmidt S, Tscheslog H, Maass N, Rosel F, Mehdorn HM, Held-Feindt J (2006) Reduced mRNA and protein expression of BCL-2 versus decreased mRNA and increased protein expression of BAX in breast cancer brain metastases: a real-time PCR and immunohistochemical evaluation. Neurol Res 28(8):787–793. https://doi.org/10.1179/016164106x110364

    Article  CAS  PubMed  Google Scholar 

  38. Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE, Reedijk M (2007) High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 20(6):685–693. https://doi.org/10.1038/modpathol.3800785

    Article  CAS  PubMed  Google Scholar 

  39. Sauerbrei W, Taube SE, McShane LM, Cavenagh MM, Altman DG (2018) Reporting recommendations for tumor marker prognostic studies (REMARK): an Abridged Explanation and Elaboration. J Natl Cancer Inst 110(8):803–811. https://doi.org/10.1093/jnci/djy088

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Nottingham Health Science Biobank and Breast Cancer Now Tissue Bank for the provision of tissue samples. We thank the Saudi Arabia Cultural Embassy for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Green.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical approval

This study was performed according to the REMARK guidelines for tumour prognostic studies [39], and approved by the Nottingham Research Ethics Committee 2 under the title “Development of a molecular genetic classification of breast cancer”.

Informed consent

Informed consent was obtained from the participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfarsi, L.H., Ansari, R.E., Craze, M.L. et al. CDC20 expression in oestrogen receptor positive breast cancer predicts poor prognosis and lack of response to endocrine therapy. Breast Cancer Res Treat 178, 535–544 (2019). https://doi.org/10.1007/s10549-019-05420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05420-8

Keywords

Navigation