Skip to main content

Advertisement

Log in

High mobility group A1 (HMGA1) protein and gene expression correlate with ER-negativity and poor outcomes in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The high mobility group A1 (HMGA1) chromatin remodeling protein is required for metastatic progression and cancer stem cell properties in preclinical breast cancer models, although its role in breast carcinogenesis has remained unclear. To investigate HMGA1 in primary breast cancer, we evaluated immunoreactivity score (IRS) in tumors from a large cohort of Asian women; HMGA1 gene expression was queried from two independent Western cohorts.

Methods

HMGA1 IRS was generated from breast tumors in Korean women as the product of staining intensity (weak = 1, moderate = 2, strong = 3) and percent positive cells (< 5% = 0, 5–30% = 1, 30–60% = 2, > 60% = 3), and stratified into three groups: low (< 3), intermediate (3–6), high (> 6). We assessed HMGA1 and estrogen receptor (ESR1) gene expression from two large databases (TCGA, METABRIC). Overall survival was ascertained from the METABRIC cohort.

Results

Among 540 primary tumors from Korean women (181 ER-negative, 359 ER-positive), HMGA1 IRS was < 3 in 89 (16.5%), 3–6 in 215 (39.8%), and > 6 in 236 (43.7%). High HMGA1 IRS was associated with estrogen receptor (ER)-negativity (χ2 = 12.07; P = 0.002) and advanced nuclear grade (χ2 = 12.83; P = 0.012). In two large Western cohorts, the HMGA1 gene was overexpressed in breast cancers compared to non-malignant breast tissue (P < 0.0001), including Asian, African American, and Caucasian subgroups. HMGA1 was highest in ER-negative tumors and there was a strong inverse correlation between HMGA1 and ESR1 gene expression (Pearson r = − 0.60, P < 0.0001). Most importantly, high HMGA1 predicted decreased overall survival (P < 0.0001) for all women with breast cancer and further stratified ER-positive tumors into those with inferior outcomes.

Conclusions

Together, our results suggest that HMGA1 contributes to estrogen-independence, tumor progression, and poor outcomes. Moreover, further studies are warranted to determine whether HMGA1 could serve as a prognostic marker and therapeutic target for women with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    PubMed  Google Scholar 

  2. Wu Q, Li J, Sun S et al (2017) Breast carcinoma in situ: an observational study of tumor subtype, treatment and outcomes. Oncotarget 8:2361–2371

    PubMed  Google Scholar 

  3. Yip CH, Taib NA, Mohamed I (2006) Epidemiology of breast cancer in Malaysia. Asian Pac J Cancer Prev 7:369

    PubMed  Google Scholar 

  4. Lee JA, Kim KI, Bae JW et al (2010) Triple negative breast cancer in Korea-distinct biology with different impact of prognostic factors on survival. Breast Cancer Res Treat 123:177–187

    PubMed  Google Scholar 

  5. Telli ML, Chang ET, Kurian AW et al (2011) Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry. Breast Cancer Res Treat 127:471–478

    PubMed  Google Scholar 

  6. Parise C, Caggiano V (2016) Breast cancer mortality among Asian-American women in California: variation according to ethnicity and tumor subtype. J Breast Cancer 19:112–121

    PubMed  PubMed Central  Google Scholar 

  7. Park EH, Min SY, Kim Z et al (2017) Basic facts of breast cancer in Korea in 2014: the 10-year overall survival progress. J Breast Cancer 20:1–11

    PubMed  PubMed Central  Google Scholar 

  8. Kang SY, Kim YS, Kim Z et al (2018) Basic findings regarding breast cancer in Korea in 2015: data from a breast cancer registry. J Breast Cancer 21:1–10

    PubMed  PubMed Central  Google Scholar 

  9. Shah SN, Cope L, Poh W et al (2013) HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells. PLoS ONE 8:e63419

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Resar LMS, Chia L, Xian L (2018) Lessons from the crypts: hMGA1—amping up Wnt for stem cells and tumor progression. Cancer Res 78:1890–1897

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Belton A, Gabrovsky A, Bae YK et al (2012) HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS ONE 7:e30034

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mani SA, Guo W, Liao M-J et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yanagisawa BL, Resar LM (2014) Hitting the bull’s eye: targeting HMGA1 in cancer stem cells. Expert Rev Anticancer Ther 14:23–30

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shah SN, Kerr C, Cope L et al (2012) HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks. PLoS ONE 7:e48533

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huso TH, Resar LM (2014) The high mobility group A1 molecular switch: turning on cancer—can we turn it off? Expert Opin Ther Targets 18:541–553

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xian L, Georgess D, Huso T et al (2017) Hmga1 amplifies Wnt Signaling and expands the intestinal stem cell compartment and Paneth cell niche. Nat Commun 8:15008

    PubMed  PubMed Central  Google Scholar 

  18. Resar LMS (2010) The high mobility group A1 gene: transforming inflammatory signals into cancer? Cancer Res 70:436–439

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shah S, Resar LMS (2012) High mobility group A1 and cancer: potential biomarker and therapeutic target. Histol Histopathol 27:567–579

    CAS  PubMed  Google Scholar 

  20. Takaha N, Resar LMS, Vindivich D et al (2004) High mobility group protein HMGI(Y) enhances tumor cell growth, invasion, and matrix metalloproteinase-2 expression in prostate cancer cells. Prostate 60:160–167

    CAS  PubMed  Google Scholar 

  21. Tesfaye A, Di Cello F, Hillion J et al (2007) The high-mobility group A1 gene up-regulates cyclooxygenase 2 expression in uterine tumorigenesis. Cancer Res 67:3998–4004

    CAS  PubMed  Google Scholar 

  22. Di Cello F, Hillion J, Kowalski J et al (2008) Cyclooxygenase inhibitors block uterine tumorigenesis in HMGA1a transgenic mice and human xenografts. Mol Cancer Ther 7:2090–2095

    PubMed  PubMed Central  Google Scholar 

  23. Hillion J, Dhara S, Sumter TF et al (2008) The high-mobility group A1a/signal transducer and activator of transcription-3 axis: an achilles heel for hematopoietic malignancies? Cancer Res 68:10121–10127

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hillion J, Wood LJ, Mukherjee M et al (2009) Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer. Mol Cancer Res 7:1803–1812

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schuldenfrei A, Belton A, Kowalski J et al (2011) HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis. BMC Genom 12:549

    CAS  Google Scholar 

  26. Hillion J, Smail SS, Di Cello F et al (2012) The HMGA1-COX-2 axis: a key molecular pathway and potential target in pancreatic adenocarcinoma. Pancreatology 12:372–379

    CAS  PubMed  Google Scholar 

  27. Hillion J, Roy S, Heydarian M et al (2016) High Mobility Group A1 (HMGA1) gene is highly overexpressed in human uterine serous carcinomas and carcinosarcomas and drives Matrix Metalloproteinase-2 (MMP-2) in a subset of tumors. Gynecol Oncol 141:580–587

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reeves R, Beckerbauer L (2001) HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta Gene 1519:13–29

    CAS  Google Scholar 

  29. Reeves R, Edberg DD, Li Y (2001) Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol 21:575–594

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7:899–910

    CAS  PubMed  Google Scholar 

  31. Lund T, Holtlund J, Fredriksen M et al (1983) On the presence of two new high mobility group-like proteins in HeLa S3 cells. FEBS Lett 152:163–167

    CAS  PubMed  Google Scholar 

  32. Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442

    CAS  PubMed  Google Scholar 

  33. Dolde CE, Mukherjee M, Cho C et al (2002) HMG-I/Y in human breast cancer cell lines. Breast Cancer Res Treat 71:181–191

    CAS  PubMed  Google Scholar 

  34. Sarhadi VK, Wikman H, Salmenkivi K et al (2006) Increased expression of high mobility group A proteins in lung cancer. J Pathol. 209:206–212

    CAS  PubMed  Google Scholar 

  35. Hristov AC, Cope L, Di Cello F et al (2010) HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma. Mod Pathol 23:98–104

    CAS  PubMed  Google Scholar 

  36. Flohr AM, Rogalla P, Bonk U et al (2003) High mobility group protein HMGA1 expression in breast cancer reveals a positive correlation with tumour grade. Histol Histopathol 18:999–1004

    CAS  PubMed  Google Scholar 

  37. Roy S, Di Cello F, Kowalski J et al (2013) HMGA1 overexpression correlates with relapse in childhood Blineage acute lymphoblastic leukemia. Leuk Lymphoma 54:2565–2567

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wood LJ, Mukherjee M, Dolde CE et al (2000) HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol Cell Biol 20:5490–5502

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wood LJ, Maher JF, Bunton TE et al (2000) The oncogenic properties of the HMG-I gene family. Cancer Res 60:4256–4261

    CAS  PubMed  Google Scholar 

  40. Hillion J, Smail SS, Di Cello F et al (2012) The HMGA1-COX-2 axis: a key molecular pathway and potential target in pancreatic adenocarcinoma. Pancreatology 12:372–379

    CAS  PubMed  Google Scholar 

  41. Dhar A, Hu J, Reeves R et al (2004) Dominant-negative c-Jun (TAM67) target genes: HMGA1 is required for tumor promoter-induced transformation. Oncogene 23:4466–4476

    CAS  PubMed  Google Scholar 

  42. Hommura F, Katabami M, Leaner VD et al (2004) HMG-I/Y is a c-Jun/activator protein-1 target gene and is necessary for c-Jun-induced anchorage-independent growth in Rat1a cells. Mol Cancer Res 2:305–314

    CAS  PubMed  Google Scholar 

  43. Xu Y, Sumter TF, Bhattacharya R et al (2004) The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia. Cancer Res 64:3371–3375

    CAS  PubMed  Google Scholar 

  44. Di Cello F, Dhara S, Hristov AC et al (2013) Inactivation of the Cdkn2a locus cooperates with HMGA1 to drive T-cell leukemogenesis. Leuk Lymphoma 54:1762–1768

    PubMed  Google Scholar 

  45. Liau SS, Jazag A, Whang EE (2006) HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res 66:11613–11622

    CAS  PubMed  Google Scholar 

  46. Méndez O, Peg V, Salvans C et al (2018) Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer. Clin Cancer Res 24:6367–6382

    PubMed  Google Scholar 

  47. Greene FL, Page DL, Fleming ID, et al, eds, for the American Joint Committee on Cancer (2002) AJCC cancer staging manual, 6th edn. Springer-Verlag, New York

  48. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013

    PubMed  Google Scholar 

  49. Hammond ME, Hayes DF, Dowsett M et al (2010) American society of clinical Oncology/College of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795

    PubMed  PubMed Central  Google Scholar 

  50. Hristov AC, Cope L, Reyes MD et al (2009) HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Mod Pathol 22:43–49

    CAS  PubMed  Google Scholar 

  51. Di Cello F, Hillion J, Hristov A et al (2008) HMGA2 participates in transformation in human lung cancer. Mol Cancer Res 6:743–750

    PubMed  PubMed Central  Google Scholar 

  52. Elston CW, Ellis IO (1991) Pathologic prognostic factors in breast cancer I The value of histologic grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    CAS  PubMed  Google Scholar 

  53. Skarnes WC, Rosen B, West AP et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu J, Schiltz JF, Ashar HR, Chada KK (2003) Hmga1 is required for normal sperm development. Mol Reprod Dev 66:81–89

    CAS  PubMed  Google Scholar 

  55. Rossi DJ, Bryder D, Zahn JM et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102:9194–9199

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Veltri RW, Khan MA, Marlow C et al (2006) Alterations in nuclear structure and expression of proPSA predict differences between native Japanese and Japanese-American prostate cancer. Urology. 68:898–904

    PubMed  Google Scholar 

  57. Carleton NM, Zhu G, Gorbounov M et al (2018) PBOV1 as a potential biomarker for more advanced prostate cancer based on protein and digital histomorphometric analysis. Prostate 78:547–559

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee G, Veltri RW, Zhu G et al (2017) Nuclear shape and architecture in benign fields predict biochemical recurrence in prostate cancer patients following radical prostatectomy: preliminary findings. Eur Urol Focus. 3:457–466

    PubMed  Google Scholar 

  59. Veltri RW, Christudass CS, Isharwal S (2012) Nuclear morphometry, nucleomics and prostate cancer progression. Asian J Androl. 14:375–384

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Carleton NM, Lee G, Madabhushi A et al (2018) Advances in the computational and molecular understanding of the prostate cancer cell nucleus. J Cell Biochem 119:7127–7142

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Berger AC, Korkut A, Kanchi RS et al (2018) A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33:690–705

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pereira B, Chin SF, Rueda OM et al (2016) The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun 7:11479

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Stoltzfus JC (2011) Logistic regression: a brief primer. Acad Emerg Med 18:1099–1104

    PubMed  Google Scholar 

  65. Michels KB (2012) The rise and fall of breast cancer rates. BMJ 344:d8003

    PubMed  Google Scholar 

  66. Collins A, Politopoulos I (2011) The genetics of breast cancer: risk factors for disease. Appl Clin Genet 4:11–19

    PubMed  PubMed Central  Google Scholar 

  67. Petracci E, Decarli A, Schairer C et al (2011) Risk factor modification and projections of absolute breast cancer risk. J Natl Cancer Inst 103:1037–1048

    PubMed  PubMed Central  Google Scholar 

  68. Liu P, Li X, Mittendorf EA et al (2013) Comparison of clinicopathologic features and survival in young American women aged 18-39 years in different ethnic groups with breast cancer. Br J Cancer 109:1302–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zeitels LR, Scharya A, Chi G et al (2014) Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes Dev 28:2588–2590

    Google Scholar 

  70. Lanahan A, Williams JB, Sanders LK et al (1992) Growth factor-induced delayed early response genes. Mol Cell Biol 12:3919–3929

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Holth LR, Tholacius AE, Reeves R (1997) Effects of epidermal growth factor and estrogen on the regulation of HMG-I/Y gene in human mammary epithelial cell lines. DNA Cell Biol 16:1299–1309

    CAS  PubMed  Google Scholar 

  72. Choudhury S, Almendro V, Merino VF et al (2013) Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics. Cell Stem Cell 13:117–130

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by NIH R21 CA2149550, NIH R01 DK102943, NIH R01 HL145780, NIH R01 CA232741, the Cindy Rosencrans Fund for Metastatic Triple Negative Breast Cancer Research, the Safeway Breast Cancer Award, and the AVON Breast Cancer Fund (to L.M.S. Resar). This work was also supported by the Medical Research Center Program (2015R1A5A2009124) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (to Y.K. Bae). The authors wish to thank these agencies for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Kyung Bae or Linda M. S. Resar.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest or other disclosures.

Ethical approval

Procedures described in this manuscript were in accordance with the Declaration of Helsinki and were approved by the Institutional Review Board at Johns Hopkins University School of Medicine.

Informed consent

Informed consent was obtained from patients included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbounov, M., Carleton, N.M., Asch-Kendrick, R.J. et al. High mobility group A1 (HMGA1) protein and gene expression correlate with ER-negativity and poor outcomes in breast cancer. Breast Cancer Res Treat 179, 25–35 (2020). https://doi.org/10.1007/s10549-019-05419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05419-1

Keywords

Navigation