Advertisement

Diffuse distribution of tumor-infiltrating lymphocytes is a marker for better prognosis and chemotherapeutic effect in triple-negative breast cancer

  • Akira I. HidaEmail author
  • Takahiro Watanabe
  • Yasuaki Sagara
  • Masahiro Kashiwaba
  • Yoshiaki Sagara
  • Kenjiro Aogi
  • Yasuyo Ohi
  • Akihide Tanimoto
Preclinical study

Abstract

Purpose

High-density tumor-infiltrating lymphocytes (TILs) are a prognostic marker for triple-negative breast cancer (TNBC). However, lymphocytic infiltration is heterogeneous in its pattern. We aimed to explore the utility of TIL distribution patterns against TIL density for predicting TNBC prognosis and chemotherapeutic effects.

Methods

Primary invasive TNBC cases were retrieved from a single institutional cohort, and archived samples were reviewed by two board-certificated pathologists. We used 154 consecutive surgical specimens from patients with standard adjuvant therapy, and 80 biopsies taken before primary systemic chemotherapy. The average density of stromal TILs was scored at 10% intervals, while the distribution pattern of TILs was evaluated as diffuse or non-diffuse. The association between TILs and prognosis or pathological complete response (pCR) was statistically analyzed.

Results

A diffuse pattern of TILs at primary surgery correlated with better prognosis (relapse-free survival [RFS], hazard ratio [HR] 3.71, 95% confidence interval [CI] 1.60–8.57; overall survival [OS], HR 3.87, 95% CI 1.46–10.27), as well as high TIL density (≥ 50%; RFS, HR 4.51, 95% CI 2.06–9.90; OS, HR 3.28, 95% CI 1.32–8.14). Diffuse TIL pattern and nodal status were independent prognostic factors in multivariate analysis. Diffuse TIL pattern upon biopsy was associated with higher pCR rate (diffuse, 46%; non-diffuse, 21%; P = 0.032). All high TIL cases had diffuse patterns and the best outcome. Interobserver concordance was moderate (k = 0.53–0.55; distribution pattern) to good (weighted k = 0.67–0.69; density), and it was faster to assess the distribution pattern than to assess the density of TIL.

Conclusions

Showing similar clinical impacts to the TIL density, diffuse TILs could be a predictive marker for better prognosis and higher pCR. The assessment of TIL distribution pattern is simple, faster, and practical. Heterogeneous tumor immunity may contribute to further stratification of TNBC treatment.

Keywords

Tumor-infiltrating lymphocytes Triple-negative breast cancer Heterogeneous tumor immunity Pathological complete response Interobserver concordance 

Abbreviations

TIL

Tumor-infiltrating lymphocyte

TNBC

Triple-negative breast cancer

ER

Estrogen receptor

PgR

Progesterone receptor

HER2

Human epithelial growth factor receptor 2

RFS

Relapse-free survival

OS

Overall survival

pCR

Pathological complete response

HE

Hematoxylin–eosin

PSC

Primary systemic chemotherapy

LPBC

Lymphocytic-predominant breast cancer

Notes

Acknowledgements

The authors would like to thank S. Haraguchi at the research center of Sagara Hospital for extracting the necessary information from the database, and the technicians at the Department of Pathology at Sagara Hospital for their assistance in dealing with archived samples. We thank H. Nikki March, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Authors’ contributions

AH, KA, and YO planned the study. AH and TW conducted pathological assessments. Yasuaki S., Yoshiaki S., and MK performed biopsies and/or surgeries, and provided oncological treatment. KA supervised the whole study. The manuscript was mainly written by AH, and amended by YO and AT. All authors read and approved the final manuscript.

Funding

This study was funded by the Division of Clinical Research Promotion at the National Hospital Organization Shikoku Cancer Center.

Compliance with ethical standards

Conflict of interest

AH received personal fees as honoraria from Chugai Pharmaceutical, Taiho Pharmaceutical, and Novartis Pharma. YS received personal fees as honoraria from AstraZeneca, Chugai Pharmaceutical, Pfizer, Eisai, Novartis Pharma, Taiho Pharmaceutical, and Takeda Pharmaceutical. MK received personal fees as honoraria from Chugai Pharmaceutical, Eisai, AstraZeneca, Pfizer, Taiho Pharmaceutical, Novartis Pharma, Takeda Pharmaceutical, Daiichi Sankyo, Kyowa Hakko Kirin, Shionogi, and Asashi Kasei. KA received personal fees as honoraria from Chugai Pharmaceutical, Eisai, AstraZeneca, Taiho Pharmaceutical, Novartis Pharma, Daiichi Sankyo, Mochida Pharmaceutical, Ono Pharmaceutical, and Eli Lilly Japan, and his institution received research funds from Chugai Pharmaceutical, Eisai and Sanofi. The other authors have no competing interests to declare.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee (No. 14-06 & 17-33) and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Formal consent was not required for this type of study.

References

  1. 1.
    Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867.  https://doi.org/10.1200/JCO.2011.41.0902 CrossRefPubMedGoogle Scholar
  2. 2.
    Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD, Schem C, Fisch K, Darb-Esfahani S, Mehta K, Sotiriou C, Wienert S, Klare P, Andre F, Klauschen F, Blohmer JU, Krappmann K, Schmidt M, Tesch H, Kummel S, Sinn P, Jackisch C, Dietel M, Reimer T, Untch M, Loibl S (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991.  https://doi.org/10.1200/JCO.2014.58.1967 CrossRefPubMedGoogle Scholar
  3. 3.
    Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, Wolff AC, Wood WC, Davidson NE, Sledge GW, Sparano JA, Badve SS (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959–2966.  https://doi.org/10.1200/JCO.2013.55.0491 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pruneri G, Vingiani A, Bagnardi V, Rotmensz N, De Rose A, Palazzo A, Colleoni AM, Goldhirsch A, Viale G (2016) Clinical validity of tumor-infiltrating lymphocytes analysis in patients with triple-negative breast cancer. Ann Oncol 27(2):249–256.  https://doi.org/10.1093/annonc/mdv571 CrossRefPubMedGoogle Scholar
  5. 5.
    Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, Gray R, Munzone E, Lemonnier J, Sotiriou C, Piccart MJ, Kellokumpu-Lehtinen PL, Vingiani A, Gray K, Andre F, Denkert C, Salgado R, Michiels S (2019) Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 37(7):559–569.  https://doi.org/10.1200/jco.18.01010 CrossRefPubMedGoogle Scholar
  6. 6.
    Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24(36):5652–5657.  https://doi.org/10.1200/jco.2006.06.5664 CrossRefPubMedGoogle Scholar
  7. 7.
    Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, Schwartz GF, Park PK, Rosenberg AL, Brill K, Mitchell EP (2007) Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s surveillance, epidemiology, and end results database. Cancer 110(4):876–884.  https://doi.org/10.1002/cncr.22836 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, Wu W, Goessl C, Runswick S, Conte P (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533.  https://doi.org/10.1056/NEJMoa1706450 CrossRefPubMedGoogle Scholar
  9. 9.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767.  https://doi.org/10.1172/JCI45014 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570.  https://doi.org/10.1126/science.1203486 CrossRefGoogle Scholar
  11. 11.
    Cimino-Mathews A, Thompson E, Taube JM, Ye X, Lu Y, Meeker A, Xu H, Sharma R, Lecksell K, Cornish TC, Cuka N, Argani P, Emens LA (2016) PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 47(1):52–63.  https://doi.org/10.1016/j.humpath.2015.09.003 CrossRefGoogle Scholar
  12. 12.
    Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, Pasetto A, Langhan M, Shelton T, Prickett T, Gartner J, Jia L, Trebska-McGowan K, Somerville RP, Robbins PF, Rosenberg SA, Goff SL, Feldman SA (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730.  https://doi.org/10.1038/s41591-018-0040-8 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121.  https://doi.org/10.1056/NEJMoa1809615 CrossRefPubMedGoogle Scholar
  14. 14.
    Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, Goubar A (2015) Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol 26(8):1698–1704.  https://doi.org/10.1093/annonc/mdv239 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, Schmitt WD, Blohmer JU, Karn T, Pfitzner BM, Kummel S, Engels K, Schneeweiss A, Hartmann A, Noske A, Fasching PA, Jackisch C, van Mackelenbergh M, Sinn P, Schem C, Hanusch C, Untch M, Loibl S (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19(1):40–50.  https://doi.org/10.1016/s1470-2045(17)30904-x CrossRefPubMedGoogle Scholar
  16. 16.
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, VandenEynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S, International TWG (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271.  https://doi.org/10.1093/annonc/mdu450 CrossRefGoogle Scholar
  17. 17.
    Wein L, Savas P, Luen SJ, Virassamy B, Salgado R, Loi S (2017) Clinical validity and utility of tumor-infiltrating lymphocytes in routine clinical practice for breast cancer patients: current and future directions. Front Oncol 7:156.  https://doi.org/10.3389/fonc.2017.00156 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hida AI, Ohi Y (2015) Evaluation of tumor-infiltrating lymphocytes in breast cancer; proposal of a simpler method. Ann Oncol 26(11):2351.  https://doi.org/10.1093/annonc/mdv363 CrossRefPubMedGoogle Scholar
  19. 19.
    Greer LT, Rosman M, Mylander WC, Hooke J, Kovatich A, Sawyer K, Buras RR, Shriver CD, Tafra L (2013) Does breast tumor heterogeneity necessitate further immunohistochemical staining on surgical specimens? J Am Coll Surg 216(2):239–251.  https://doi.org/10.1016/j.jamcollsurg.2012.09.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Hou Y, Nitta H, Wei L, Banks PM, Portier B, Parwani AV, Li Z (2017) HER2 intratumoral heterogeneity is independently associated with incomplete response to anti-HER2 neoadjuvant chemotherapy in HER2-positive breast carcinoma. Breast Cancer Res Treat 166(2):447–457.  https://doi.org/10.1007/s10549-017-4453-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Luen SJ, Savas P, Fox SB, Salgado R, Loi S (2017) Tumour-infiltrating lymphocytes and the emerging role of immunotherapy in breast cancer. Pathology 49(2):141–155.  https://doi.org/10.1016/j.pathol.2016.10.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Nawaz S, Heindl A, Koelble K, Yuan Y (2015) Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer. Mod Pathol 28(6):766–777.  https://doi.org/10.1038/modpathol.2015.37 CrossRefPubMedGoogle Scholar
  23. 23.
    Heindl A, Sestak I, Naidoo K, Cuzick J, Dowsett M, Yuan Y (2018) Relevance of spatial heterogeneity of immune infiltration for predicting risk of recurrence after endocrine therapy of ER + breast cancer. J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djx137 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hida AI, Sagara Y, Yotsumoto D, Kanemitsu S, Kawano J, Baba S, Rai Y, Oshiro Y, Aogi K, Sagara Y, Ohi Y (2016) Prognostic and predictive impacts of tumor-infiltrating lymphocytes differ between Triple-negative and HER2-positive breast cancers treated with standard systemic therapies. Breast Cancer Res Treat 158(1):1–9.  https://doi.org/10.1007/s10549-016-3848-2 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Watanabe T, Hida AI, Inoue N, Imamura M, Fujimoto Y, Akazawa K, Hirota S, Miyoshi Y (2018) Abundant tumor infiltrating lymphocytes after primary systemic chemotherapy predicts poor prognosis in estrogen receptor-positive/HER2-negative breast cancers. Breast Cancer Res Treat 168(1):135–145.  https://doi.org/10.1007/s10549-017-4575-z CrossRefPubMedGoogle Scholar
  26. 26.
    Hida AI, Mizuno Y, Ueda N, Oshiro Y, Sugita A, Matsukage S, Maeda T, Kito K, Ohtsuki Y, Aogi K (2017) Simple assessment reveals the importance of distribution and density of tumor-infiltrating lymphocytes in triple-negative breast cancer. Breast 32:S33–S34.  https://doi.org/10.1016/S0960-9776(17)30134-0 CrossRefGoogle Scholar
  27. 27.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF, American Society of Clinical O, College of American P (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145.  https://doi.org/10.1200/jco.2006.09.2775 CrossRefPubMedGoogle Scholar
  28. 28.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF, American Society of Clinical O, College of American P (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013.  https://doi.org/10.1200/jco.2013.50.9984 CrossRefGoogle Scholar
  29. 29.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, Statistics Subcommittee of the NCIEWGoCD (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23(36):9067–9072.  https://doi.org/10.1200/jco.2004.01.0454 CrossRefPubMedGoogle Scholar
  30. 30.
    Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, Ficarra G, Mathieu MC, Delaloge S, Curigliano G, Andre F (2014) Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol 25(3):611–618.  https://doi.org/10.1093/annonc/mdt556 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, von Torne C, Weichert W, Engels K, Solbach C, Schrader I, Dietel M, von Minckwitz G (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113.  https://doi.org/10.1200/JCO.2009.23.7370 CrossRefPubMedGoogle Scholar
  32. 32.
    Pruneri G, Gray KP, Vingiani A, Viale G, Curigliano G, Criscitiello C, Lang I, Ruhstaller T, Gianni L, Goldhirsch A, Kammler R, Price KN, Cancello G, Munzone E, Gelber RD, Regan MM, Colleoni M (2016) Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22-00. Breast Cancer Res Treat 158(2):323–331.  https://doi.org/10.1007/s10549-016-3863-3 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, Watanabe G, Tada H, Suzuki A, Ohuchi N, Ishida T (2015) Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res 17:124.  https://doi.org/10.1186/s13058-015-0632-x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964.  https://doi.org/10.1126/science.1129139 CrossRefGoogle Scholar
  35. 35.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, Tumeh PC, Schumacher TN, Lo RS, Ribas A (2016) Mutations Associated with acquired resistance to PD-1 Blockade in Melanoma. N Engl J Med 375(9):819–829.  https://doi.org/10.1056/NEJMoa1604958 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Konig L, Mairinger FD, Hoffmann O, Bittner AK, Schmid KW, Kimmig R, Kasimir-Bauer S, Bankfalvi A (2019) Dissimilar patterns of tumor-infiltrating immune cells at the invasive tumor front and tumor center are associated with response to neoadjuvant chemotherapy in primary breast cancer. BMC Cancer 19(1):120.  https://doi.org/10.1186/s12885-019-5320-2 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Masuda N, Lee SJ, Ohtani S, Im YH, Lee ES, Yokota I, Kuroi K, Im SA, Park BW, Kim SB, Yanagita Y, Ohno S, Takao S, Aogi K, Iwata H, Jeong J, Kim A, Park KH, Sasano H, Ohashi Y, Toi M (2017) Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med 376(22):2147–2159.  https://doi.org/10.1056/NEJMoa1612645 CrossRefPubMedGoogle Scholar
  38. 38.
    Swisher SK, Wu Y, Castaneda CA, Lyons GR, Yang F, Tapia C, Wang X, Casavilca SA, Bassett R, Castillo M, Sahin A, Mittendorf EA (2016) Interobserver agreement between pathologists assessing tumor-infiltrating lymphocytes (TILs) in breast cancer using methodology proposed by the International TILs Working Group. Ann Surg Oncol 23(7):2242–2248.  https://doi.org/10.1245/s10434-016-5173-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Mani NL, Schalper KA, Hatzis C, Saglam O, Tavassoli F, Butler M, Chagpar AB, Pusztai L, Rimm DL (2016) Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer. Breast Cancer Res 18(1):78.  https://doi.org/10.1186/s13058-016-0737-x CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Steele KE, Tan TH, Korn R, Dacosta K, Brown C, Kuziora M, Zimmermann J, Laffin B, Widmaier M, Rognoni L, Cardenes R, Schneider K, Boutrin A, Martin P, Zha J, Wiestler T (2018) Measuring multiple parameters of CD8+ tumor-infiltrating lymphocytes in human cancers by image analysis. J Immunother Cancer 6(1):20.  https://doi.org/10.1186/s40425-018-0326-x CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Klauschen F, Muller KR, Binder A, Bockmayr M, Hagele M, Seegerer P, Wienert S, Pruneri G, de Maria S, Badve S, Michiels S, Nielsen TO, Adams S, Savas P, Symmans F, Willis S, Gruosso T, Park M, Haibe-Kains B, Gallas B, Thompson AM, Cree I, Sotiriou C, Solinas C, Preusser M, Hewitt SM, Rimm D, Viale G, Loi S, Loibl S, Salgado R, Denkert C (2018) Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Semin Cancer Biol 52(Pt 2):151–157.  https://doi.org/10.1016/j.semcancer.2018.07.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Kato T, Park JH, Kiyotani K, Ikeda Y, Miyoshi Y, Nakamura Y (2017) Integrated analysis of somatic mutations and immune microenvironment of multiple regions in breast cancers. Oncotarget 8(37):62029–62038.  https://doi.org/10.18632/oncotarget.18790 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264.  https://doi.org/10.1038/nrc3239 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982.  https://doi.org/10.1200/JCO.2014.59.4358 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology, Field of OncologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  2. 2.Department of PathologyHyogo College of MedicineNishinomiyaJapan
  3. 3.Department of Breast Surgical OncologyHakuaikai Sagara HospitalKagoshimaJapan
  4. 4.Department of Breast OncologyNational Hospital Organization Shikoku Cancer CenterMatsuyamaJapan
  5. 5.Department of PathologyHakuaikai Sagara HospitalKagoshimaJapan
  6. 6.Department of PathologyMatsuyama Shimin HospitalMatsuyamaJapan

Personalised recommendations