A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients



Chloroquine has demonstrated anti-tumor activities through autophagy inhibition and cell cycle disruption. This study aimed to assess the effect of single-agent chloroquine on breast tumor cellular proliferation in a randomized, phase II, double-blind, placebo-controlled, pre-surgical window of opportunity trial.


Patients with newly diagnosed breast cancer were randomized 2:1 to chloroquine 500 mg daily or placebo for 2- to 6-weeks prior to their breast surgery. The primary outcome was the relative change in measures of proliferation (Ki67) in primary breast cancer cells pre- and post-treatment. Adverse events and toxicity profiles were also evaluated.


From September 2015 to December 2016, 70 patients were randomized [46 (66%) chloroquine and 24 (34%) placebo]. Ten patients who were randomized to chloroquine withdrew from study due to adverse events. Mean duration of drug intake was 15 days (range 14–29 days). There were no significant differences between the chloroquine or placebo arms with respect to either the percentage change (− 0.4 vs. − 1.2, p = 0.088) or absolute change (− 2.0% vs. − 5.2%, p = 0.066) in Ki67 index pre- and post-drug treatment. Although adverse effects were minimal and all classified as grade 1, the effects were significant enough to cause nearly 15% of patients to discontinue therapy.


Treatment with single-agent chloroquine 500 mg daily in the preoperative setting was not associated with any significant effects on breast cancer cellular proliferation. It was, however, associated with toxicity that may affect its broader use in oncology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542. https://doi.org/10.1038/nrc.2017.53

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Zheng K, He Z, Kitazato K, Wang Y (2019) Selective autophagy regulates cell cycle in cancer therapy. Theranostics 9:104–125. https://doi.org/10.7150/thno.30308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Chude CI, Amaravadi RK (2017) Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci 18(6):1279. https://doi.org/10.3390/ijms18061279

    CAS  Article  PubMed Central  Google Scholar 

  4. 4.

    Papanagnou P, Papadopoulos GE, Stivarou T, Pappas A (2019) Toward fully exploiting the therapeutic potential of marketed pharmaceuticals: the use of octreotide and chloroquine in oncology. OncoTargets Ther 12:319–339. https://doi.org/10.2147/OTT.S182685

    Article  Google Scholar 

  5. 5.

    Zhang Y, Liao Z, Zhang L, Xiao H (2015) The utility of chloroquine in cancer therapy. Curr Med Res Opin 31:1009–1013. https://doi.org/10.1185/03007995.2015.1025731

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Xu R, Ji Z, Xu C, Zhu J (2018) The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers. Medicine 97:e12912. https://doi.org/10.1097/MD.0000000000012912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Shi T-T, Yu X-X, Yan L-J, Xiao H-T (2017) Research progress of hydroxychloroquine and autophagy inhibitors on cancer. Cancer Chemother Pharmacol 79:287–294. https://doi.org/10.1007/s00280-016-3197-1

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Mauthe M, Orhon I, Rocchi C et al (2018) Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14:1435–1455. https://doi.org/10.1080/15548627.2018.1474314

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Al-Bari MAA (2015) Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 70:1608–1621. https://doi.org/10.1093/jac/dkv018

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kim EL, Wüstenberg R, Rübsam A et al (2010) Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro Oncol 12:389–400. https://doi.org/10.1093/neuonc/nop046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jiang P, Zhao Y, Shi W et al (2008) Cell growth inhibition, G < sub > 2</sub >/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell Physiol Biochem 22:431–440. https://doi.org/10.1159/000185488

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Weyerhäuser P, Kantelhardt SR, Kim EL (2018) Re-purposing chloroquine for glioblastoma: potential merits and confounding variables. Front Oncol 8:335. https://doi.org/10.3389/fonc.2018.00335

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Rahim R, Strobl JS (2009) Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs 20:736–745. https://doi.org/10.1097/CAD.0b013e32832f4e50

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zhang Y, Cao Y, Sun X et al (2017) Chloroquine (CQ) exerts anti-breast cancer through modulating microenvironment and inducing apoptosis. Int Immunopharmacol 42:100–107. https://doi.org/10.1016/j.intimp.2016.11.027

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Cook KL, Warri A, Soto-Pantoja DR et al (2014) Chloroquine inhibits autophagy to potentiate antiestrogen responsiveness in ER + breast cancer. Clin Cancer Res 20:3222–3232. https://doi.org/10.1158/1078-0432.CCR-13-3227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cufí S, Vazquez-Martin A, Oliveras-Ferraros C et al (2013) The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to Trastuzumab in HER2-positive breast cancer. Sci Rep 3:2469. https://doi.org/10.1038/srep02469

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hu C, Solomon VR, Ulibarri G, Lee H (2008) The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. Bioorg Med Chem 16:7888–7893. https://doi.org/10.1016/j.bmc.2008.07.076

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Briceño E, Calderon A, Sotelo J (2007) Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg Neurol 67:388–391. https://doi.org/10.1016/j.surneu.2006.08.080

    Article  PubMed  Google Scholar 

  19. 19.

    Sotelo J, Briceño E, López-González MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:337–343

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Briceño E, Reyes S, Sotelo J (2003) Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg Focus 14:e3

    Article  PubMed  Google Scholar 

  21. 21.

    Rojas-Puentes LL, Gonzalez-Pinedo M, Crismatt A et al (2013) Phase II randomized, double-blind, placebo-controlled study of whole-brain irradiation with concomitant chloroquine for brain metastases. Radiat Oncol 8:209. https://doi.org/10.1186/1748-717X-8-209

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Edmiston KH, McAuliffe P (2009) Study of the efficacy of chloroquine in the treatment of ductal carcinoma in situ (The PINC Trial). In: clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT01023477?term=NCT01023477&draw=1&rank=1.Accessed 4 Jun 2019

  23. 23.

    Chang JC (2011) Chloroquine with taxane chemotherapy for advanced or metastatic breast cancer after anthracycline failure (CAT). In: clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT01446016?term=NCT01446016&rank=1.Accessed 4 Jun 2019

  24. 24.

    Levasseur N, Clemons M, Hilton J et al (2015) Neoadjuvant endocrine therapy and window of opportunity trials: new standards in the treatment of breast cancer? Minerva Chir 70:181–193

    CAS  PubMed  Google Scholar 

  25. 25.

    Arnaout A, Robertson S, Kuchuk I et al (2015) Evaluating the feasibility of performing window of opportunity trials in breast cancer. Int J Surg Oncol 2015:785793. https://doi.org/10.1155/2015/785793

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yerushalmi R, Woods R, Ravdin PM et al (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11:174–183. https://doi.org/10.1016/S1470-2045(09)70262-1

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Fasching PA, Heusinger K, Haeberle L et al (2011) Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 11:486. https://doi.org/10.1186/1471-2407-11-486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hammond MEH, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 134:907–922. https://doi.org/10.1043/1543-2165-134.6.907

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Marmor MF, Kellner U, Lai TYY et al (2011) Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 118:415–422. https://doi.org/10.1016/j.ophtha.2010.11.017

    Article  PubMed  Google Scholar 

  30. 30.

    National Cancer Institute (2009) Common terminology criteria for adverse events (CTCAE) version 4.0

  31. 31.

    Niraula S, Dowling RJO, Ennis M et al (2012) Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat 135:821–830. https://doi.org/10.1007/s10549-012-2223-1

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hadad S, Iwamoto T, Jordan L et al (2011) Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat 128:783–794. https://doi.org/10.1007/s10549-011-1612-1

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Glimelius B, Lahn M (2011) Window-of-opportunity trials to evaluate clinical activity of new molecular entities in oncology. Ann Oncol 22:1717–1725. https://doi.org/10.1093/annonc/mdq622

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kalinsky K, Hershman DL (2012) Cracking open window of opportunity trials. J Clin Oncol 30:2573–2575. https://doi.org/10.1200/JCO.2012.42.3293

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Sui X, Chen R, Wang Z et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838. https://doi.org/10.1038/cddis.2013.350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    World Health Organization Chloroquine. http://archives.who.int/emlib/MedicineDisplay5c98.html. Accessed 17 Jun 2019

  37. 37.

    Pascolo S (2016) Time to use a dose of Chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 771:139–144. https://doi.org/10.1016/j.ejphar.2015.12.017

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Weniger H, World Health Organization (1979) Review of side effects and toxicity of chloroquine. World Health Organization, Geneva

    Google Scholar 

  39. 39.

    Schmitz S, Duhoux F, Machiels J-P (2016) Window of opportunity studies: do they fulfil our expectations? Cancer Treat Rev 43:50–57. https://doi.org/10.1016/j.ctrv.2015.12.005

    Article  PubMed  Google Scholar 

  40. 40.

    True LD (2008) Quality control in molecular immunohistochemistry. Histochem Cell Biol 130:473–480. https://doi.org/10.1007/s00418-008-0481-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Polley M-YC, Leung SCY, McShane LM et al (2013) An international Ki67 reproducibility study. JNCI J Natl Cancer Inst 105:1897–1906. https://doi.org/10.1093/jnci/djt306

    Article  PubMed  Google Scholar 

  42. 42.

    Pu X, Storr SJ, Zhang Y et al (2017) Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis 22:357–368. https://doi.org/10.1007/s10495-016-1323-5

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA (2010) Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69:20–28. https://doi.org/10.1136/ard.2008.101766

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Schroeder RL, Gerber JP (2014) Chloroquine and hydroxychloroquine binding to melanin: some possible consequences for pathologies. Toxicol Rep 1:963–968. https://doi.org/10.1016/j.toxrep.2014.10.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Costedoat-Chalumeau N, Dunogué B, Leroux G et al (2015) A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin Rev Allergy Immunol 49:317–326. https://doi.org/10.1007/s12016-015-8469-8

    CAS  Article  PubMed  Google Scholar 

Download references


The authors are grateful to the research staff for their assistance in recruiting participants and for data collection.


This trial was supported by the Canadian Breast Cancer Foundation Ontario Chapter and University of Ottawa Department of Surgery research Grant.

Author information



Corresponding author

Correspondence to Mark Clemons.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Ottawa Hospital Research Ethics Board) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arnaout, A., Robertson, S.J., Pond, G.R. et al. A randomized, double-blind, window of opportunity trial evaluating the effects of chloroquine in breast cancer patients. Breast Cancer Res Treat 178, 327–335 (2019). https://doi.org/10.1007/s10549-019-05381-y

Download citation


  • Window of opportunity clinical trial
  • Chloroquine
  • Breast cancer