Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome

Abstract

Purpose

Understanding the molecular mediators of breast cancer survival is critical for accurate disease prognosis and improving therapies. Here, we identified Neuronatin (NNAT) as a novel antiproliferative modifier of estrogen receptor-alpha (ER+) breast cancer.

Experimental design

Genomic regions harboring breast cancer modifiers were identified by congenic mapping in a rat model of carcinogen-induced mammary cancer. Tumors from susceptible and resistant congenics were analyzed by RNAseq to identify candidate genes. Candidates were prioritized by correlation with outcome, using a consensus of three breast cancer patient cohorts. NNAT was transgenically expressed in ER+ breast cancer lines (T47D and ZR75), followed by transcriptomic and phenotypic characterization.

Results

We identified a region on rat chromosome 3 (142–178 Mb) that modified mammary tumor incidence. RNAseq of the mammary tumors narrowed the candidate list to three differentially expressed genes: NNAT, SLC35C2, and FAM210B. NNAT mRNA and protein also correlated with survival in human breast cancer patients. Quantitative immunohistochemistry of NNAT protein revealed an inverse correlation with survival in a univariate analysis of patients with invasive ER+ breast cancer (training cohort: n = 444, HR = 0.62, p = 0.031; validation cohort: n = 430, HR = 0.48, p = 0.004). NNAT also held up as an independent predictor of survival after multivariable adjustment (HR = 0.64, p = 0.038). NNAT significantly reduced proliferation and migration of ER+ breast cancer cells, which coincided with altered expression of multiple related pathways.

Conclusions

Collectively, these data implicate NNAT as a novel mediator of cell proliferation and migration, which correlates with decreased tumorigenic potential and prolonged patient survival.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. 2.

    Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD (2012) The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol 36(3):237–248

    Article  PubMed  Google Scholar 

  3. 3.

    Stewart BW, Wild C, International Agency for Research on Cancer, World Health Organization (2014) World cancer report 2014. WHO Press, Lyon

    Google Scholar 

  4. 4.

    Adamovic T, McAllister D, Wang T, Adamovic D, Rowe JJ, Moreno C, Lazar J, Jacob HJ, Sugg SL (2010) Identification of novel carcinogen-mediated mammary tumor susceptibility loci in the rat using the chromosome substitution technique. Genes Chromosom Cancer 49(11):1035–1045

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Pitale PM, Howse W, Gorbatyuk M (2017) Neuronatin protein in health and disease. J Cell Physiol 232(3):477–481

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Flister MJ, Endres BT, Rudemiller N, Sarkis AB, Santarriaga S, Lemke A, Roy I, Geurts AM, Moreno C, Ran S et al (2014) CXM—a new tool for mapping breast cancer risk in the tumor microenvironment. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-13-3212

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Flister MJ, Tsaih SW, Stoddard A, Plasterer C, Jagtap J, Parchur AK, Sharma G, Prisco AR, Lemke A, Murphy D et al (2017) Host genetic modifiers of nonproductive angiogenesis inhibit breast cancer. Breast Cancer Res Treat 165(1):53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Nass N, Walter S, Jechorek D, Weissenborn C, Ignatov A, Haybaeck J, Sel S, Kalinski T (2017) High neuronatin (NNAT) expression is associated with poor outcome in breast cancer. Virchows Archiv 471(1):23–30

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Peck AR, Witkiewicz AK, Liu C, Klimowicz AC, Stringer GA, Pequignot E, Freydin B, Yang N, Ertel A, Tran TH et al (2012) Low levels of Stat5a protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes. Breast Cancer Res 14(5):R130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sato T, Tran TH, Peck AR, Liu C, Ertel A, Lin J, Neilson LM, Rui H (2013) Global profiling of prolactin-modulated transcripts in breast cancer in vivo. Mol Cancer 12:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Peck AR, Witkiewicz AK, Liu C, Stringer GA, Klimowicz AC, Pequignot E, Freydin B, Tran TH, Yang N, Rosenberg AL et al (2011) Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure. J Clin Oncol 29(18):2448–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, Pepper MS, Zawieja DC, Ran S (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115(2):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  14. 14.

    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Tabula Muris C, Overall C, Logistical C, Organ C, Processing, Library P, Sequencing, Computational Data A, Cell Type A, Writing G et al (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562(7727):367–372

    Article  CAS  Google Scholar 

  17. 17.

    Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F et al (2018) Mapping the mouse cell atlas by microwell-seq. Cell 172(5):1091–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Russo IH, Russo J (1996) Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 104(9):938–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Russo J, Wilgus G, Russo IH (1979) Susceptibility of the mammary gland to carcinogenesis: I Differentiation of the mammary gland as determinant of tumor incidence and type of lesion. Am J Pathol 96(3):721–736

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Shull J, Dennison K, Chack A, Trentham-Dietz A (2018) Rat models of 17beta-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol Genom 50(3):215–234

    Article  CAS  Google Scholar 

  21. 21.

    Russo J (2015) Significance of rat mammary tumors for human risk assessment. Toxicol Pathol 43(2):145–170

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Ran S, Volk L, Hall K, Flister MJ (2010) Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology 17(4):229–251

    Article  PubMed  Google Scholar 

  23. 23.

    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  24. 24.

    Lanczky A, Nagy A, Bottai G, Munkacsy G, Szabo A, Santarpia L, Gyorffy B (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 160(3):439–446

    Article  CAS  Google Scholar 

  25. 25.

    Akhtar N, Li W, Mironov A, Streuli CH (2016) Rac1 controls both the secretory function of the mammary gland and its remodeling for successive gestations. Dev Cell 38(5):522–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Foster JS, Henley DC, Ahamed S, Wimalasena J (2001) Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab 12(7):320–327

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Lin HH, Bell E, Uwanogho D, Perfect LW, Noristani H, Bates TJ, Snetkov V, Price J, Sun YM (2010) Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling. Stem Cells 28(11):1950–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Oyang EL, Davidson BC, Lee W, Poon MM (2011) Functional characterization of the dendritically localized mRNA neuronatin in hippocampal neurons. PLoS ONE 6(9):e24879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Suh YH, Kim WH, Moon C, Hong YH, Eun SY, Lim JH, Choi JS, Song J, Jung MH (2005) Ectopic expression of Neuronatin potentiates adipogenesis through enhanced phosphorylation of cAMP-response element-binding protein in 3T3-L1 cells. Biochem Biophys Res Commun 337(2):481–489

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Joe MK, Lee HJ, Suh YH, Han KL, Lim JH, Song J, Seong JK, Jung MH (2008) Crucial roles of neuronatin in insulin secretion and high glucose-induced apoptosis in pancreatic beta-cells. Cell Signal 20(5):907–915

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N, Park SM, Catena R, Do Y, Brazin J et al (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23(1):63–76

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Wong T, Kim J, Khalid O, Sun H, Kim Y (2012) Double edge: CDK2AP1 in cell-cycle regulation and epigenetic regulation. J Dent Res 91(3):235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Carvajal L, Hamard P, Tonnessen C, Manfredi J (2012) E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Genes Dev 26(14):1533–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    O’Leary B, Finn RS, Turner NC (2016) Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13(7):417–430

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, Colleoni M, DeMichele A, Loi S, Verma S et al (2016) Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 17(4):425–439

    Article  CAS  Google Scholar 

  37. 37.

    Turner NC, Huang Bartlett C, Cristofanilli M (2015) Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373(17):1672–1673

    Article  PubMed  Google Scholar 

  38. 38.

    Lau WM, Doucet M, Huang D, Weber KL, Kominsky SL (2013) CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells. Biochem Biophys Res Commun 437(2):261–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lau WM, Weber KL, Doucet M, Chou YT, Brady K, Kowalski J, Tsai HL, Yang J, Kominsky SL (2010) Identification of prospective factors promoting osteotropism in breast cancer: a potential role for CITED2. Int J Cancer 126(4):876–884

    CAS  PubMed  Google Scholar 

  40. 40.

    Jayaraman S, Doucet M, Lau WM, Kominsky SL (2016) CITED2 modulates breast cancer metastatic ability through effects on IKKα. Mol Cancer Res 14(8):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Myers MG Jr (2004) Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res 59:287–304

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Sultana R, Kataki AC, Borthakur BB, Basumatary TK, Bose S (2017) Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene 621:51–58

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Khaidakov M, Mitra S, Kang BY, Wang X, Kadlubar S, Novelli G, Raj V, Winters M, Carter WC, Mehta JL (2011) Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. PLoS ONE 6(5):e20277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang B, Zhao H, Zhao L, Zhang Y, Wan Q, Shen Y, Bu X, Wan M, Shen C (2017) Up-regulation of OLR1 expression by TBC1D3 through activation of TNFalpha/NF-kappaB pathway promotes the migration of human breast cancer cells. Cancer Lett 408:60–70

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, Tsichlis PN, Liu XS, Struhl K (2010) A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17(4):348–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jozef Lazar for his assistance in generating the SS-3BN congenic strains.

Funding

This work was supported by a seed grant from the Wisconsin Breast Cancer Showhouse, the MCW Cancer Center, the Advancing a Healthier Wisconsin Endowment, and the Dr. Nancy Laning Sobczak Fund for Breast Cancer (M.J.F, H.R., C.B.). Support was also received from the NCI (R01CA193343 (M.J.F), R01CA188575 (H.R)); the Mary Kay Foundation (Grant No. 024-16 (M.J.F) and 017-29 (C.B.)); the METAvivor Foundation (M.J.F and H.R.); Susan G. Komen Grants KG091116 (H.R., E.P.M, I.C., A.J.K., C.D.S., J.A.H., and H.H.) and CCR17483233 (C.B), an American Cancer Society Institutional Research Grant (#86-004-26 (C.B.)); and the National Center for Research Resources, the National Center for Advancing Translational Sciences, and the Office of the Director of the NIH via the Clinical & Translational Science Institute (#8KL2TR000056 (C.B.)), NIH Office of the Director and NIEHS (K01ES025435 (J.W.P.)). The study was also supported by W81XWH-12-2-0050, HU0001-16-2-0004 from the U.S. Department of Defense through the Henry M. Jackson Foundation for the Advancement of Military Medicine (C.D.S., A.J.K., J.A.H., and H.H.). The views expressed in this article are those of the authors and do not reflect the official policy of the Department of the Army/Navy/Air Force, Department of Defense (DOD), or US Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Flister.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. The Institutional Animal Care and Use Committee (IACUC) of the Medical College of Wisconsin approved all animal studies. All procedures involving animals were conducted in accordance with the National Institutes of Health guidelines concerning the use and care of experimental animals. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All histological breast cancer tissues were archival, de-identified specimens approved for use under waiver of consent by MCW IRB protocol PRO00028590.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plasterer, C., Tsaih, SW., Peck, A.R. et al. Neuronatin is a modifier of estrogen receptor-positive breast cancer incidence and outcome. Breast Cancer Res Treat 177, 77–91 (2019). https://doi.org/10.1007/s10549-019-05307-8

Download citation

Keywords

  • Breast Cancer
  • NNAT
  • Cell cycle
  • Estrogen
  • Prognosis