Skip to main content

Milk intake and mammographic density in premenopausal women

Abstract

Purpose

Mammographic density is a strong risk factor for breast cancer. Although diet is associated with breast cancer risk, there are limited studies linking adult diet, including milk intake, with mammographic density. Here, we investigate the association of milk intake with mammographic density in premenopausal women.

Methods

We analyzed data from 375 cancer-free premenopausal women who had routine screening mammography at Washington University School of Medicine, St. Louis, Missouri in 2016. We used Volpara to measure volumetric percent density, dense volume, and non-dense volume. We collected information on recent milk intake (past 12 months), and categorized skim milk and low/reduced-fat milk intake into 4 groups: < 1/week, 1/week, 2–6 times/week, ≥ 1/day, while whole and soy milk intake were categorized into 2 groups: < 1/week, ≥ 1/week. We used multivariable linear regression model to evaluate the associations of milk intake and log-transformed volumetric percent density, dense volume, and non-dense volume.

Results

In multivariable analyses, volumetric percent density was 20% (p-value = 0.003) lower in the 1/week group, 14% (p-value = 0.047) lower in the 2–6/week group, and 12% (p-value = 0.144) lower in the ≥ 1/day group (p-trend = 0.011) compared with women who consumed low/reduced-fat milk < 1/week. Attenuated and non-significant associations were observed for low/reduced-fat milk intake and dense volume. There were no associations of whole, skim, and soy milk intake with volumetric percent density and dense volume.

Conclusions

Recent low/reduced-fat milk intake was inversely associated with volumetric percent density in premenopausal women. Studies on childhood and adolescent milk intake and adult mammographic density in premenopausal women are needed.

This is a preview of subscription content, access via your institution.

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BI-RADS:

Breast imaging reporting and data system

BMI:

Body mass index

CLA:

Conjugated linoleic acid

ER:

Estrogen receptor

IRB:

Institutional review board

SD:

Standard deviation

References

  1. Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629

    Article  CAS  PubMed  Google Scholar 

  2. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7(12):1133–1144

    CAS  PubMed  Google Scholar 

  3. McCormack VA, dos Santos Silva I (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15(6):1159–1169

    Article  PubMed  Google Scholar 

  4. Byrne C, Ursin G, Martin CF, Peck JD, Cole EB, Zeng D, Kim E, Yaffe MD, Boyd NF, Heiss G et al (2017) Mammographic Density Change With Estrogen and Progestin Therapy and Breast Cancer Risk. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djx001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, Vachon C, Bakker MF, Giles GG, Chia KS et al (2014) Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 106(5):dju078

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227–236

    Article  CAS  PubMed  Google Scholar 

  7. Vachon CM, van Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, Pankratz VS (2007) Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 9(6):217

    Article  PubMed  PubMed Central  Google Scholar 

  8. Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K (2017) Breast cancer surveillance C: population-attributable risk proportion of clinical risk factors for breast cancer. JAMA Oncol 3(9):1228–1236

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sprague BL, Gangnon RE, Burt V, Trentham-Dietz A, Hampton JM, Wellman RD, Kerlikowske K, Miglioretti DL (2014) Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst 106(10):dju255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomson CA, Arendell LA, Bruhn RL, Maskarinec G, Lopez AM, Wright NC, Moll CE, Aickin M, Chen Z (2007) Pilot study of dietary influences on mammographic density in pre- and postmenopausal Hispanic and non-Hispanic white women. Menopause 14(2):243–250

    Article  PubMed  Google Scholar 

  11. Takata Y, Maskarinec G, Park SY, Murphy SP, Wilkens LR, Kolonel LN (2007) Mammographic density and dietary patterns: the multiethnic cohort. Eur J Cancer Prev 16(5):409–414

    Article  PubMed  Google Scholar 

  12. Masala G, Ambrogetti D, Assedi M, Giorgi D, Del Turco MR, Palli D (2006) Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population. Int J Cancer 118(7):1782–1789

    Article  CAS  PubMed  Google Scholar 

  13. Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA (2000) Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev 9(2):151–160

    CAS  PubMed  Google Scholar 

  14. Garcia-Arenzana N, Navarrete-Munoz EM, Lope V, Moreo P, Vidal C, Laso-Pablos S, Ascunce N, Casanova-Gomez F, Sanchez-Contador C, Santamarina C et al (2014) Calorie intake, olive oil consumption and mammographic density among Spanish women. Int J Cancer 134(8):1916–1925

    Article  CAS  PubMed  Google Scholar 

  15. Alipour S, Saberi A, Alikhassi A, Bayani L, Hosseini L (2014) Association of mammographic breast density with dairy product consumption, sun exposure, and daily activity. ISRN Oncol 2014:159049

    PubMed  PubMed Central  Google Scholar 

  16. Alimujiang A, Imm KR, Appleton CM, Colditz GA, Berkey CS, Toriola AT (2018) Adiposity at age 10 and mammographic density among premenopausal women. Cancer Prev Res 11:287–294

    Article  Google Scholar 

  17. Ng KH, Lau S (2015) Vision 20/20: mammographic breast density and its clinical applications. Med Phys 42(12):7059–7077

    Article  PubMed  Google Scholar 

  18. Eng A, Gallant Z, Shepherd J, McCormack V, Li J, Dowsett M, Vinnicombe S, Allen S, dos-Santos-Silva I (2014) Digital mammographic density and breast cancer risk: a case-control study of six alternative density assessment methods. Breast Cancer Res 16(5):439

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A (2016) Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 60:32527

    Article  CAS  PubMed  Google Scholar 

  20. Vuolo L, Di Somma C, Faggiano A, Colao A (2012) Vitamin D and cancer. Front Endocrinol 3:58

    Article  CAS  Google Scholar 

  21. Sergeev IN (2004) Calcium as a mediator of 1,25-dihydroxyvitamin D3-induced apoptosis. J Steroid Biochem Mol Biol 89–90(1–5):419–425

    Article  CAS  PubMed  Google Scholar 

  22. Hack CC, Stoll MJ, Jud SM, Heusinger K, Adler W, Haeberle L, Ganslandt T, Heindl F, Schulz-Wendtland R, Cavallaro A et al (2017) Correlation of mammographic density and serum calcium levels in patients with primary breast cancer. Cancer Med 6(6):1473–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin MH, Holmes MD, Hankinson SE, Wu K, Colditz GA, Willett WC (2002) Intake of dairy products, calcium, and vitamin D and risk of breast cancer. J Natl Cancer Inst 94(17):1301–1311

    Article  CAS  PubMed  Google Scholar 

  24. Fair AM, Lewis TJ, Sanderson M, Dupont WD, Fletcher S, Egan KM, Disher AC (2015) Increased vitamin D and calcium intake associated with reduced mammographic breast density among premenopausal women. Nutr Res 35(10):851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berube S, Diorio C, Masse B, Hebert-Croteau N, Byrne C, Cote G, Pollak M, Yaffe M, Brisson J (2005) Vitamin D and calcium intakes from food or supplements and mammographic breast density. Cancer Epidemiol Biomarkers Prev 14(7):1653–1659

    Article  CAS  PubMed  Google Scholar 

  26. Diorio C, Berube S, Byrne C, Masse B, Hebert-Croteau N, Yaffe M, Cote G, Pollak M, Brisson J (2006) Influence of insulin-like growth factors on the strength of the relation of vitamin D and calcium intakes to mammographic breast density. Cancer Res 66(1):588–597

    Article  CAS  PubMed  Google Scholar 

  27. Parodi PW (2005) Dairy product consumption and the risk of breast cancer. J Am Coll Nutr 24(6 Suppl):556 s-568 s

    Article  Google Scholar 

  28. Huth PJ, DiRienzo DB, Miller GD (2006) Major scientific advances with dairy foods in nutrition and health. J Dairy Sci 89(4):1207–1221

    Article  CAS  PubMed  Google Scholar 

  29. Maskarinec G, Takata Y, Franke AA, Williams AE, Murphy SP (2004) A 2-year soy intervention in premenopausal women does not change mammographic densities. J Nutr 134(11):3089–3094

    Article  CAS  PubMed  Google Scholar 

  30. Wu AH, Yu MC, Tseng CC, Pike MC (2008) Epidemiology of soy exposures and breast cancer risk. Br J Cancer 98(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51(26):7632–7635

    Article  CAS  PubMed  Google Scholar 

  32. Messina M (2016) Soy and health update: evaluation of the clinical and epidemiologic literature. Nutrients 8(12):754

    Article  PubMed Central  Google Scholar 

  33. Byers KG, Savaiano DA (2005) The myth of increased lactose intolerance in African-Americans. J Am Coll Nutr 24(6 Suppl):569 s-573 s

    Article  Google Scholar 

  34. Colditz GA, Willett WC, Stampfer MJ, Sampson L, Rosner B, Hennekens CH, Speizer FE (1987) The influence of age, relative weight, smoking, and alcohol intake on the reproducibility of a dietary questionnaire. Int J Epidemiol 16(3):392–398

    Article  CAS  PubMed  Google Scholar 

  35. Salvini S, Hunter DJ, Sampson L, Stampfer MJ, Colditz GA, Rosner B, Willett WC (1989) Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. Int J Epidemiol 18(4):858–867

    Article  CAS  PubMed  Google Scholar 

  36. Frazier AL, Li L, Cho E, Willett WC, Colditz GA (2004) Adolescent diet and risk of breast cancer. Cancer Causes Control: CCC 15(1):73–82

    Article  PubMed  Google Scholar 

  37. Wyshak G, Frisch RE (2000) Breast cancer among former college athletes compared to non-athletes: a 15-year follow-up. Br J Cancer 82(3):726–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hilakivi-Clarke L, Forsen T, Eriksson JG, Luoto R, Tuomilehto J, Osmond C, Barker DJ (2001) Tallness and overweight during childhood have opposing effects on breast cancer risk. Br J Cancer 85(11):1680–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colditz GA, Frazier AL (1995) Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomarkers Prev 4(5):567–571

    CAS  PubMed  Google Scholar 

  40. Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI (2004) Growth patterns and the risk of breast cancer in women. N Engl J Med 351(16):1619–1626

    Article  CAS  PubMed  Google Scholar 

  41. Lee HN, Sohn YM, Han KH (2015) Comparison of mammographic density estimation by Volpara software with radiologists’ visual assessment: analysis of clinical-radiologic factors affecting discrepancy between them. Acta Radiol 56(9):1061–1068

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the study coordinators, especially Kellie Imm, and Linda Li who helped with participant recruitment and data entry.

Funding

The study is supported by funds from the Susan G. Komen Foundation (CCR15332379-Dr. Toriola), Siteman Cancer Center Siteman Investment Program supported by The Foundation for Barnes-Jewish Hospital Cancer Frontier Fund (BJFH CFF 3781 & 4035) and Washington University School of Medicine; Siteman Cancer Center Biostatistics Shared Resource. The Siteman Cancer Center is supported in part by an NCI Cancer Center Support Grant #P30 CA091842. Dr. Colditz is supported by the Breast Cancer Research Foundation. Dr. Han is supported by awards from Barnes-Jewish Hospital and Breast Cancer Research Foundation (Award ID: BCRF-17-028). The funders had no role in study design, data collection, analysis, interpretation of data, preparation of the report, or decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adetunji T. Toriola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Ethical approval for this study was provided by the Washington University School of Medicine, Saint Louis, MO Institutional Review Board.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zong, X., Li, Y. et al. Milk intake and mammographic density in premenopausal women. Breast Cancer Res Treat 174, 249–255 (2019). https://doi.org/10.1007/s10549-018-5062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-5062-x

Keywords

  • Milk intake
  • Mammographic density
  • Dairy
  • Diet
  • Breast cancer