Skip to main content

Advertisement

Log in

Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The identification of molecular biomarkers for classification of breast cancer is needed to better stratify the patients and guide therapeutic decisions. The aim of this study was to investigate the value of MAPRE1 gene encoding microtubule-end binding proteins EB1 as a biomarker in breast cancer and evaluate whether combinatorial expression of MAPRE1 and MTUS1 gene encoding EB1-negative regulator ATIP3 may improve breast cancer diagnosis and prognosis.

Methods

Probeset intensities for MAPRE1 and MTUS1 genes were retrieved from Exonhit splice array analyses of 45 benign and 120 malignant breast tumors for diagnostic purposes. Transcriptomic analyses (U133 Affymetrix array) of one exploratory cohort of 150 invasive breast cancer patients and two independent series of 130 and 155 samples were compared with clinical data of the patients for prognostic studies. A tissue microarray from an independent cohort of 212 invasive breast tumors was immunostained with anti-EB1 and anti-ATIP3 antibodies.

Results

We show that MAPRE1 gene is a diagnostic and prognostic biomarker in breast cancer. High MAPRE1 levels correlate with tumor malignancy, high histological grade and poor clinical outcome. Combination of high-MAPRE1 and low-MTUS1 levels in tumors is significantly associated with tumor aggressiveness and reduced patient survival. IHC studies of combined EB1/ATIP3 protein expression confirmed these results.

Conclusions

These studies emphasize the importance of studying combinatorial expression of EB1 and ATIP3 genes and proteins rather than each biomarker alone. A population of highly aggressive breast tumors expressing high-EB1/low-ATIP3 may be considered for the development of new molecular therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  PubMed  CAS  Google Scholar 

  2. Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422:753–758

    Article  PubMed  CAS  Google Scholar 

  3. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    Article  PubMed  CAS  Google Scholar 

  4. Su L-K, Qi Y (2001) Characterization of human MAPRE genes and their proteins. Genomics 71:142–149

    Article  PubMed  CAS  Google Scholar 

  5. Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C (2017) Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci 74(13):2381–2393

    Article  PubMed  CAS  Google Scholar 

  6. Vaughan KT (2005) TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends. J Cell Biol 171(2):197–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Maurer SP, Cade NI, Bohner G, Gustafsson N, Boutant E, Surrey T (2014) EB1 accelerates two confirmational transitions important for microtubule maturation and dynamics. Curr Biol 24(4):372–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Galjart N (2010) Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 20:R528–R537

    Article  PubMed  CAS  Google Scholar 

  9. Jiang K, Toedt G, Montenegro Gouveia S, Davey NE, Hua S, van der Vaart B et al (2012) A proteome- wide screen for Mammalian SxIP Motif-containing microtubule plus-end tracking proteins. Curr Biol 22:1800–1807

    Article  PubMed  CAS  Google Scholar 

  10. Kumar P, Wittmann T (2012) + TIPs: SxIPping along microtubule ends. Trends Cell Biol 22:418–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dong X, Liu F, Sun L, Liu M, Li D, Su D et al (2010) Oncogenic function of microtubule end-binding protein 1 in breast cancer. J Pathol 220(3):361–369

    PubMed  CAS  Google Scholar 

  12. Berges R, Baeza-Kallee N, Tabouret E, Chinot O, Petit M, Kruczynski A et al (2014) End-binding 1 protein overexpression correlates with glioblastoma progression and sensitizes to Vinca-alkaloids in vitro and in vivo. Oncotarget 5(24):12769–12787

    Article  PubMed  PubMed Central  Google Scholar 

  13. Orimo T, Ojima H, Hiraoka N, Saito S, Kosuge T, Kakisaka T et al (2008) Proteomic profiling reveals the prognostic value of adenomatous polyposis coli-end-binding protein 1 in hepatocellular carcinoma. Hepatology 48(6):1851–1863

    Article  PubMed  CAS  Google Scholar 

  14. Kumar M, Mehra S, Thakar A, Shukla NK, Roychoudhary A, Sharma MC et al (2016) End Binding 1 (EB1) overexpression in oral lesions and cancer: a biomarker of tumor progression and poor prognosis. Clin Chim Acta 459:45–52

    Article  PubMed  CAS  Google Scholar 

  15. Stypula-Cyrus Y, Mutyal NN, Dela Cruz M, Kunte DP, Radosevich AJ, Wali R et al (2009) End-binding protein 1 (EB1) up-regulation is an early event in colorectal carcinogenesis. FEBS Lett 588(5):829–835

    Article  CAS  Google Scholar 

  16. Sugihara Y, Taniguchi H, Kushima R, Tsuda H, Kubota D, Ichikawa H et al (2012) Proteomic-based identification of the APC-binding protein EB1 as a candidate of novel tissue biomarker and therapeutic target for colorectal cancer. J Proteom 75(17):5342–5355

    Article  CAS  Google Scholar 

  17. Rodrigues-Ferreira S, Di Tommaso A, Dimitrov A, Cazaubon S, Gruel N, Colasson H et al (2009) 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS ONE 4(10):e7239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Molina A, Velot L, Ghouinem L, Abdelkarim M, Bouchet BP, Luissint AC et al (2013) ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res 73(9):2905–2915

    Article  PubMed  CAS  Google Scholar 

  19. Velot L, Molina A, Rodrigues-Ferreira S, Nehlig A, Bouchet BP, Morel M et al (2015) Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3. Oncotarget 6(41):43557–43570

    Article  PubMed  PubMed Central  Google Scholar 

  20. André F, Michiels S, Dessen P, Scott V, Suciu V, Uzan C et al (2009) Exonic expression profiling of breast cancer and benign lesions: a retrospective analysis. Lancet Oncol 10(4):381–390

    Article  PubMed  CAS  Google Scholar 

  21. Fehlbaum P, Guihal C, Bracco L, Cochet O (2005) A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res 33:e47

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reyal F, Stransky N, Bernard-Pierrot I, Vincent-Salomon A, de Rycke Y, Elvin P et al (2005) Visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes–a study of 130 invasive ductal breast carcinomas. Cancer Res 65:1376–1383

    Article  PubMed  CAS  Google Scholar 

  23. Hammond ME, Hayes DF, Wolff AC, Mangu PB, Temin S (2010) American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Oncol Pract 6(4):195–197

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS et al (2018) human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36(20):2105–2122

    Article  PubMed  CAS  Google Scholar 

  25. Maire V, Némati F, Richardson M, Vincent-Salomon A, Tesson B, Rigaill G et al (2013) Polo-like kinase 1: a potential therapeutic option in combination with conventional chemotherapy for the management of patients with triple-negative breast cancer. Cancer Res 73:816–823

    Article  CAS  Google Scholar 

  26. Maire V, Baldeyron C, Richardson M, Tesson B, Vincent-Salomon A, Gravier E et al (2013) TTK/hMPS1 is an attractive therapeutic target for triple-negative breast cancer. PloS ONE 8:e63712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lodillinsky C, Infante E, Guichard A, Chaligné R, Fuhrmann L, Cyrta J et al (2016) p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 35(3):344–357

    Article  PubMed  CAS  Google Scholar 

  28. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 123:725–731

    Article  PubMed  CAS  Google Scholar 

  29. Alexe G, Alexe S, Axelrod DE, Bonates TO, Lozina II, Reiss M et al (2006) Breast cancer prognosis by combinatorial analysis od gene expression data. Breast Cancer Res 8(4):R41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Espinosa E, Vara J, Navarro IS, Gámez-Pozo A, Pinto A, Zamora P et al (2011) Gene profiling in breast cancer: time to move forward. Cancer Treat Rev 37(6):416–421

    PubMed  Google Scholar 

  31. Almeida TB, Carnell AJ, Barsukov IL, Berry NG (2017) Targeting SxIP-EB1 interaction: an integrated approach to the discovery of small molecule modulators of dynamic binding sites. Sci Rep 7(1):15533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Céline Lefebvre for helpful discussion and Nicolas Signolle and Ibrahim Bouakka for excellent assistance. This work was supported by the INSERM, the CNRS, the University Paris-Saclay, the Institut Gustave Roussy, the A*MIDEX project (No. ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government program, managed by the ANR and ITMO Cancer AVIESAN as part of the Cancer Plan No. PC201419, the Labex LERMIT, the Fondation ARC pour la Recherche contre le Cancer, the Ligue Nationale Contre le Cancer, the association Odyssea, GEFLUC and Prolific.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Nahmias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

The authors declare that all experiments presented here comply with the current laws of France.

Research involving human and animal rights

This article does not contain any studies with animals performed by any of the authors. All procedures used in studies involving human participants have been previously published elsewhere and were in accordance with ethical standards of the Institut Curie and Gustave Roussy committees, and with 1964 Helsinki declaration.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues-Ferreira, S., Nehlig, A., Monchecourt, C. et al. Combinatorial expression of microtubule-associated EB1 and ATIP3 biomarkers improves breast cancer prognosis. Breast Cancer Res Treat 173, 573–583 (2019). https://doi.org/10.1007/s10549-018-5026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-5026-1

Keywords

Navigation