Skip to main content

Advertisement

Log in

The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to evaluate protein expression of PD-L1 and CD20 as prognostic biomarkers of patient outcome in inflammatory breast cancer (IBC) samples.

Methods

PD-L1 and CD20 protein expression was measured by immunohistochemistry in 221 pretreatment IBC biopsies. PD-L1 was assessed in tumor cells (PD-L1+ tumor cells) and tumor stromal infiltrating lymphocytes (PD-L1+ TILs); CD20 was scored in tumor-infiltrating B cells. Kaplan–Meier curves and Cox proportional hazard models were used for survival analysis.

Results

PD-L1+ tumor cells, PD-L1+ TILs, and CD20+ TILs were found in 8%, 66%, and 62% of IBC, respectively. PD-L1+ tumor cells strongly correlated with high TILs, pathological complete response (pCR), CD20+ TILs, but marginally with breast cancer-specific survival (BCSS, P = 0.057). PD-L1+ TILs strongly correlated with high TILs, CD20+ TILs, and longer disease-free survival (DFS) in all IBC and in triple-negative (TN) IBC (P < 0.035). IBC and TN IBC patients with tumors containing both CD20+ TILs and PD-L1+ TILs (CD20+TILs/PD-L1+TILs) showed longer DFS and improved BCSS (P < 0.002) than patients lacking both, or those with either CD20+ TILs or PD-L1+ TILs alone. In multivariate analyses, CD20+TILs/PD-L1+TILs status was an independent prognostic factor for DFS in IBC (hazard ratio (HR): 0.53, 95% CI 0.37–0.77) and TN IBC (HR: 0.39 95% CI 0.17–0.88), and for BCSS in IBC (HR: 0.60 95% CI 0.43–0.85) and TN IBC (HR: 0.38 95% CI 0.17–0.83).

Conclusion

CD20+TILs/PD-L1+TILs status represents an independent favorable prognostic factor in IBC and TN IBC, suggesting a critical role for B cells in antitumor immune responses. Anti-PD-1/PD-L1 and B cell-activating immunotherapies should be explored in these settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IBC:

Inflammatory breast cancer.

TN:

Triple-negative.

PD-1:

Programmed cell death 1.

PD-L1:

Programmed cell death ligand 1.

TILs:

Tumor-infiltrating lymphocytes.

pCR:

Pathological complete response.

BCSS:

Breast cancer-specific survival.

DFS:

Disease-free survival.

HR:

Hazard ratio.

CI:

Confidential interval.

NACT:

Neoadjuvant chemotherapy.

FFPETs:

Formalin-fixed paraffin embedded tissues.

References

  1. Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH (2005) Trends in Inflammatory Breast Carcinoma Incidence and Survival: The Surveillance, Epidemiology, and End Results Program at the National Cancer Institute. J Natl Cancer Inst 97(13):966–975. https://doi.org/10.1093/jnci/dji172

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dawood S, Lei X, Dent R, Gupta S, Sirohi B, Cortes J, Cristofanilli M, Buchholz T, Gonzalez-Angulo AM (2014) Survival of women with inflammatory breast cancer: a large population-based study. Ann Oncol 25(6):1143–1151. https://doi.org/10.1093/annonc/mdu121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pierga J-Y, Petit T, Delozier T, Ferrero J-M, Campone M, Gligorov J, Lerebours F, Roché H, Bachelot T, Charafe-Jauffret E, Pavlyuk M, Kraemer S, Bidard F-C, Viens P (2012) Neoadjuvant bevacizumab, trastuzumab, and chemotherapy for primary inflammatory HER2-positive breast cancer (BEVERLY-2): an open-label, single-arm phase 2 study. Lancet Oncol 13(4):375–384. https://doi.org/10.1016/S1470-2045(12)70049-9

    Article  PubMed  CAS  Google Scholar 

  4. Schlichting JA, Soliman AS, Schairer C, Schottenfeld D, Merajver SD (2012) Inflammatory and non-inflammatory breast cancer survival by socioeconomic position in the Surveillance, Epidemiology, and End Results database, 1990–2008. Breast Cancer Res Treat 134(3):1257–1268. https://doi.org/10.1007/s10549-012-2133-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dawood S, Ueno N, Valero V, Woodward W, Buchholz T, Hortobagyi G, Gonzalez-Angulo A, Cristofanilli M (2011) Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early: a large population-based study. Cancer 117(9):1819–1826

    Article  PubMed  Google Scholar 

  6. Gonzalez-Angulo AM, Hennessy BT, Broglio K, Meric-Bernstam F, Cristofanilli M, Giordano SH, Buchholz TA, Sahin A, Singletary SE, Buzdar AU, Hortobagyi GN (2007) Trends for Inflammatory Breast Cancer: Is Survival Improving? Oncologist 12(8):904–912. https://doi.org/10.1634/theoncologist.12-8-904

    Article  PubMed  Google Scholar 

  7. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HEK, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. https://doi.org/10.1038/nature14011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New Engl J Med 366(26):2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  PubMed  CAS  Google Scholar 

  9. Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L (2016) Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer: Phase Ib KEYNOTE-012 Study. J Clin Oncol 34(21):2460–2467. https://doi.org/10.1200/jco.2015.64.8931

    Article  PubMed  CAS  Google Scholar 

  10. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med 8(8):793–800

    Article  PubMed  CAS  Google Scholar 

  11. Chen Daniel S, Mellman I (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  PubMed  CAS  Google Scholar 

  12. Emens LA (2018) Breast Cancer Immunotherapy: Facts and Hopes. Clin Cancer Res 24(3):511–520. https://doi.org/10.1158/1078-0432.ccr-16-3001

    Article  PubMed  CAS  Google Scholar 

  13. Muenst S, Schaerli AR, Gao F, Däster S, Trella E, Droeser RA, Muraro MG, Zajac P, Zanetti R, Gillanders WE, Weber WP, Soysal SD (2014) Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146(1):15–24. https://doi.org/10.1007/s10549-014-2988-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Beckers RK, Selinger CI, Vilain R, Madore J, Wilmott JS, Harvey K, Holliday A, Cooper CL, Robbins E, Gillett D, Kennedy CW, Gluch L, Carmalt H, Mak C, Warrier S, Gee HE, Chan C, McLean A, Walker E, McNeil CM, Beith JM, Swarbrick A, Scolyer RA, O’Toole SA (2016) Programmed death ligand 1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 69(1):25–34. https://doi.org/10.1111/his.12904

    Article  PubMed  Google Scholar 

  15. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, Rimm DL (2014) In Situ Tumor PD-L1 mRNA Expression Is Associated with Increased TILs and Better Outcome in Breast Carcinomas. Clin Cancer Res 20(10):2773–2782. https://doi.org/10.1158/1078-0432.ccr-13-2702

    Article  PubMed  CAS  Google Scholar 

  16. Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D, Bertucci F (2015) Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 6(7):5449–5464

    Article  PubMed  Google Scholar 

  17. Brown JR, Wimberly H, Lannin DR, Nixon C, Rimm DL, Bossuyt V (2014) Multiplexed Quantitative Analysis of CD3, CD8, and CD20 Predicts Response to Neoadjuvant Chemotherapy in Breast Cancer. Clin Cancer Res 20(23):5995–6005. https://doi.org/10.1158/1078-0432.ccr-14-1622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mahmoud SMA, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AHS, Ellis IO, Green AR (2011) Tumor-Infiltrating CD8 + Lymphocytes Predict Clinical Outcome in Breast Cancer. J Clin Oncol 29(15):1949–1955. https://doi.org/10.1200/jco.2010.30.5037

    Article  PubMed  Google Scholar 

  19. Chaher N, Arias-Pulido H, Terki N, Qualls C, Bouzid K, Verschraegen C, Wallace AM, Royce M (2012) Molecular and epidemiological characteristics of inflammatory breast cancer in Algerian patients. Breast Cancer Res Treat 131(2):437–444. https://doi.org/10.1007/s10549-011-1422-5

    Article  PubMed  CAS  Google Scholar 

  20. Dawood S, Merajver SD, Viens P, Vermeulen PB, Swain SM, Buchholz TA, Dirix LY, Levine PH, Lucci A, Krishnamurthy S, Robertson FM, Woodward WA, Yang WT, Ueno NT, Cristofanilli M (2010) International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol 22:515–523. https://doi.org/10.1093/annonc/mdq345

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE Jr, Pazdur R, Ditsch N, Rastogi P, Eiermann W, von Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. The Lancet 384(9938):164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

    Article  Google Scholar 

  22. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26(2):259–271. https://doi.org/10.1093/annonc/mdu450

    Article  PubMed  CAS  Google Scholar 

  23. Altman DG, McShane LM, Sauerbrei W, Taube SE (2012) Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration. PLOS Medicine 9(5):e1001216. https://doi.org/10.1371/journal.pmed.1001216

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sunshine JC, Nguyen PL, Kaunitz GJ, Cottrell TR, Berry S, Esandrio J, Xu H, Ogurtsova A, Bleich KB, Cornish TC, Lipson EJ, Anders RA, Taube JM (2017) PD-L1 Expression in Melanoma: A Quantitative Immunohistochemical Antibody Comparison. Clin Cancer Res 23(16):4938–4944. https://doi.org/10.1158/1078-0432.ccr-16-1821

    Article  PubMed  CAS  Google Scholar 

  25. Mahmoud SMA, Lee AHS, Paish EC, Macmillan RD, Ellis IO, Green AR (2012) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 132(2):545–553. https://doi.org/10.1007/s10549-011-1620-1

    Article  PubMed  CAS  Google Scholar 

  26. Lachin JB Methods. John Wiley and Sons, NY, pp 272–2852000

  27. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu H-M, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci J-E, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong W-X, Zitvogel L, Kroemer G, Galluzzi L (2014) Consensus guidelines for the detection of immunogenic cell death. OncoImmunology 3(9):e955691. https://doi.org/10.4161/21624011.2014.955691

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bertucci F, Finetti P, Colpaert C, Mamessier E, Parizel M, Dirix L, Viens P, Birnbaum D, van Laere S (2015) PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget 6(15):13506–13519

    Article  PubMed  PubMed Central  Google Scholar 

  29. He J, Huo L, Ma J, Zhao J, Bassett RL, Sun X, Ueno NT, Lim B, Gong Y (2018) Expression of Programmed Death Ligand 1 (PD-L1) in Posttreatment Primary Inflammatory Breast Cancers and Clinical Implications. Am J Clin Pathol 149(3):253–261. https://doi.org/10.1093/ajcp/aqx162

    Article  PubMed  Google Scholar 

  30. Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, Serody JS (2014) Prognostic B-cell Signatures Using mRNA-Seq in Patients with Subtype-Specific Breast and Ovarian Cancer. Clin Cancer Res 20(14):3818–3829. https://doi.org/10.1158/1078-0432.ccr-13-3368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pelekanou V, Carvajal-Hausdorf DE, Altan M, Wasserman B, Carvajal-Hausdorf C, Wimberly H, Brown J, Lannin D, Pusztai L, Rimm DL (2017) Effect of neoadjuvant chemotherapy on tumor-infiltrating lymphocytes and PD-L1 expression in breast cancer and its clinical significance. Breast Cancer Res 19(1):91. https://doi.org/10.1186/s13058-017-0884-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nelson BH (2010) CD20 + B Cells: The Other Tumor-Infiltrating Lymphocytes. J Immunol 185(9):4977–4982. https://doi.org/10.4049/jimmunol.1001323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the GlaxoSmithKline Oncology Ethnic Research Initiative Grant (Drs. Arias-Pulido and Chaher; no grant number), and the UICC ICRETT fellowship (Dr. Chaher; ICR/09/043), and the National Institutes of Health (Dr. Prossnitz; CA163890). We would like to thank the PMCCC Human Tissue Repository for providing tissue samples and clinical data (Algiers, Algeria); Karen Buehler (Tricore, NM) for technical support with IHC. The authors thank Dr. J. Louise Lines of the Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth for critical reading of this manuscript and insightful comments, Donald Fitzpatrick (Computing and Media Services; Dartmouth Biomedical Libraries) for help with the graphs, and Mrs. Kathleen Bryar for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Arias-Pulido.

Ethics declarations

Conflict of interest

LAE receives research funding from Genentech, Roche, EMD Serono, Merck, Astra Zeneca, and Corvus. She has served on advisory boards for Astrazeneca, Medimmune, Syndax, Bayer, and Abbvie. ACM receives research funding from Bristol-Myers Squibb. The remaining authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2018_4834_MOESM1_ESM.tif

Fig. S1. The presence of CD20+ TILs is associated with improved DFS, but not BCSS in IBC patients. Kaplan-Meier survival estimates of DFS (a) and BCSS (b) in IBC patients with positive (≥1%) CD20+ TILs compared to negative (<1%) CD20+ TILs. The number of patients at risk of death and/or relapse from IBC are shown at 0, 12, 24, 36, 48, 72, 84, and 96 months below the x axis. Supplementary material 1 (TIFF 3187 KB)

Table S1. Supplementary material 2 (XLSX 12 KB)

Table S2. Supplementary material 3 (XLSX 11 KB)

Table S3. Supplementary material 4 (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Pulido, H., Cimino-Mathews, A., Chaher, N. et al. The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome. Breast Cancer Res Treat 171, 273–282 (2018). https://doi.org/10.1007/s10549-018-4834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4834-7

Keywords

Navigation