Skip to main content

Advertisement

Log in

GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

G protein-coupled receptors (GPCRs) represent the largest family of druggable targets in human genome. Although several GPCRs can cross-talk with the human epidermal growth factor receptors (HERs), the expression and function of most GPCRs remain unknown in HER2+ breast cancer (BC). In this study, we aimed to evaluate gene expression of GPCRs in tumorigenic or anti-HER2 drug-resistant cells and to understand the potential role of candidate GPCRs in HER2+ BC.

Methods

Gene expression of 352 GPCRs was profiled in Aldeflur+ tumorigenic versus Aldeflur− population and anti-HER2 therapy-resistant derivatives versus parental cells of HER2+ BT474 cells. The GPCR candidates were confirmed in 7 additional HER2+ BC cell line models and publicly available patient dataset. Anchorage-dependent and anchorage-independent cell growth, mammosphere formation, and migration/invasion were evaluated upon GPR110 knockdown by siRNA in BT474 and SKBR3 parental and lapatinib+ trastuzumab-resistant (LTR) cells.

Results

Adhesion and class A GPCRs were overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population of BT474 cells, respectively. GPR110 was the only GPCR overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population in BT474, SKBR3, HCC1569, MDA-MB-361, AU565, and/or HCC202 cells and in HER2+ BC subtype in patient tumors. Using BT474 and SKBR3 parental and LTR cells, we found that GPR110 knockdown significantly reduced anchorage-dependent/independent cell growth as well as migration/invasion of parental and LTR cells and mammosphere formation in LTR derivatives and not in parental cells.

Conclusion

Our data suggest a potential role of GPR110 in tumorigenicity and in tumor cell dissemination in HER2+ BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7(7):505–516

    Article  PubMed  CAS  Google Scholar 

  2. Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8(5):459–465

    Article  PubMed  CAS  Google Scholar 

  3. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  PubMed  CAS  Google Scholar 

  4. Rimawi MF, De Angelis C, Schiff R (2015) Resistance to Anti-HER2 Therapies in Breast Cancer. In: American Society of Clinical Oncology educational book, American Society of Clinical Oncology, pp. e157–e164 2015

  5. Deupi X, Standfuss J (2011) Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 21(4):541–551

    Article  PubMed  CAS  Google Scholar 

  6. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94

    Article  PubMed  CAS  Google Scholar 

  7. Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10(8):579–590

    Article  PubMed  CAS  Google Scholar 

  8. Rozengurt E (2007) Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 213(3):589–602

    Article  PubMed  CAS  Google Scholar 

  9. Pan D, Zhu Y, Zhou Z, Wang T, You H, Jiang C, Lin X (2016) The CBM complex underwrites NF-kappaB activation to promote HER2-associated tumor malignancy. Mol Cancer Res 14(1):93–102

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Recio S, Fuster G, Fernandez-Nogueira P, Pastor-Arroyo EM, Park SY, Mayordomo C, Ametller E, Mancino M, Gonzalez-Farre X, Russnes HG et al (2013) Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer. Cancer Res 73(21):6424–6434

    Article  PubMed  CAS  Google Scholar 

  11. Arora P, Cuevas BD, Russo A, Johnson GL, Trejo J (2008) Persistent transactivation of EGFR and ErbB2/HER2 by protease-activated receptor-1 promotes breast carcinoma cell invasion. Oncogene 27(32):4434–4445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yousef BA, Hassan HM, Guerram M, Hamdi AM, Wang B, Zhang LY, Jiang ZZ (2016) Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells. Biomed Pharmacother 79:112–119

    Article  PubMed  CAS  Google Scholar 

  13. Marchese A (2006) Assessment of degradation and ubiquitination of CXCR4, a GPCR regulated by EGFR family members. Methods Mol Biol 327:139–145

    PubMed  CAS  Google Scholar 

  14. Gschwind A, Prenzel N, Ullrich A (2002) Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res 62(21):6329–6336

    PubMed  CAS  Google Scholar 

  15. Arpino G, Gutierrez C, Weiss H, Rimawi M, Massarweh S, Bharwani L, De Placido S, Osborne CK, Schiff R (2007) Treatment of human epidermal growth factor receptor 2-overexpressing breast cancer xenografts with multiagent HER-targeted therapy. J Natl Cancer Inst 99(9):694–705

    Article  PubMed  CAS  Google Scholar 

  16. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang YC, Morrison G, Gillihan R, Guo J, Ward RM, Fu X, Botero MF, Healy NA, Hilsenbeck SG, Phillips GL et al (2011) Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers–role of estrogen receptor and HER2 reactivation. Breast Cancer Res 13(6):R121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Huang C, Park CC, Hilsenbeck SG, Ward R, Rimawi MF, Wang YC, Shou J, Bissell MJ, Osborne CK, Schiff R (2011) β1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res 13(4):R84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gu G, Gelsomino L, Covington KR, Beyer AR, Wang J, Rechoum Y, Huffman K, Carstens R, Ando S, Fuqua SA (2015) Targeting thyroid hormone receptor beta in triple-negative breast cancer. Breast Cancer Res Treat 150(3):535–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chung A, Choi M, Han BC, Bose S, Zhang X, Medina-Kauwe L, Sims J, Murali R, Taguiam M, Varda M et al (2015) Basal protein expression is associated with worse outcome and trastuzamab resistance in HER2+ invasive breast cancer. Clin Breast Cancer 15(6):448–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fu X, Jeselsohn R, Pereira R, Hollingsworth EF, Creighton CJ, Li F, Shea M, Nardone A, De Angelis C, Heiser LM et al (2016) FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci USA 113(43):E6600–E6609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Alexander SP, Davenport AP, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C et al (2015) The concise guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br J Pharmacol 172(24):5744–5869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170(3):414–427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Paavola KJ, Hall RA (2012) Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol Pharmacol 82(5):777–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, Chen IM, Atlas SR, Kang H, Ar K et al (2010) Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 116(23):4874–4884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lum AM, Wang BB, Beck-Engeser GB, Li L, Channa N, Wabl M (2010) Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer. BMC Cancer 10:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sadras T, Heatley SL, Kok CH, Dang P, Galbraith KM, McClure BJ, Muskovic W, Venn NC, Moore S, Osborn M et al (2017) Differential expression of MUC4, GPR110 and IL2RA defines two groups of CRLF2-rearranged acute lymphoblastic leukemia patients with distinct secondary lesions. Cancer Lett 408:92–101

    Article  PubMed  CAS  Google Scholar 

  30. Shi H, Zhang S (2017) Expression and prognostic role of orphan receptor GPR110 in glioma. Biochem Biophys Res Commun 491(2):349–354

    Article  PubMed  CAS  Google Scholar 

  31. Xie K, Ye Y, Zeng Y, Gu J, Yang H, Wu X (2017) Polymorphisms in genes related to epithelial-mesenchymal transition and risk of non-small cell lung cancer. Carcinogenesis 38(10):1029–1035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Fredriksson R, Lagerstrom MC, Hoglund PJ, Schioth HB (2002) Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett 531(3):407–414

    Article  PubMed  CAS  Google Scholar 

  33. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    Article  PubMed  CAS  Google Scholar 

  34. Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N, Nagai K, Mizuno N, Kogawa K, Miura I et al (2013) Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia 27(8):1637–1649

    Article  PubMed  CAS  Google Scholar 

  35. Tang X, Jin R, Qu G, Wang X, Li Z, Yuan Z, Zhao C, Siwko S, Shi T, Wang P et al (2013) GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Galphaq-p63RhoGEF-Rho GTPase pathway. Cancer Res 73(20):6206–6218

    Article  PubMed  CAS  Google Scholar 

  36. Valtcheva N, Primorac A, Jurisic G, Hollmen M, Detmar M (2013) The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem 288(50):35736–35748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Xu L, Begum S, Barry M, Crowley D, Yang L, Bronson RT, Hynes RO (2010) GPR56 plays varying roles in endogenous cancer progression. Clin Exp Metastasis 27(4):241–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci USA 112(19):6194–6199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wilson JM, Lorimer E, Tyburski MD, Williams CL (2015) β-Adrenergic receptors suppress Rap1B prenylation and promote the metastatic phenotype in breast cancer cells. Cancer Biol Ther 16(9):1364–1374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lin HH (2012) Adhesion family of G protein-coupled receptors and cancer. Chang Gung Med J 35(1):15–27

    PubMed  Google Scholar 

  41. Ward Y, Lake R, Yin JJ, Heger CD, Raffeld M, Goldsmith PK, Merino M, Kelly K (2011) LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res 71(23):7301–7311

    Article  PubMed  CAS  Google Scholar 

  42. Ren J, Zhang L (2011) Effects of ovarian cancer G protein coupled receptor 1 on the proliferation, migration, and adhesion of human ovarian cancer cells. Chin Med J (Engl) 124(9):1327–1332

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Department of Defense BCRP Grants W81XWH-14-1-0340 and W81XWH-14-1-0341; NIH Grants CA125123, P50 CA058183, HL129191, and CA186784-01; Stand Up To Cancer (SU2C-AACR-DT0409), Welch Foundation endowment in Chemistry and Related Sciences (L-AU-0002), as well as Grants from American Association of Colleges of Pharmacy and UH Small Grants Program. None of the funding agencies had any role in the design, analysis, or reporting of the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghana V. Trivedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, R.R., Yadav, P., Sahay, D. et al. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat 170, 279–292 (2018). https://doi.org/10.1007/s10549-018-4751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4751-9

Keywords

Navigation