Skip to main content

Pre-operative progesterone benefits operable breast cancer patients by modulating surgical stress

Abstract

Purpose

We have reported a survival benefit of single injection of hydroxyprogesterone prior to surgery for primary tumour in patients with node-positive operable breast cancer. Hydroxyprogesterone was meant to recapitulate the luteal phase of menstrual cycle in these women. We wanted to understand the molecular basis of action of hydroxyprogesterone on primary breast tumours in a peri-operative setting.

Methods

We performed whole transcriptome sequencing (RNA-Seq) of primary breast tumour samples collected from patients before and after hydroxyprogesterone exposure and controls. Paired breast cancer samples were obtained from patients who were given hydroxyprogesterone before surgery and a group of patients who were subjected to only surgery.

Results

A test of significance between the two groups revealed 207 significantly altered genes, after correction for multiple hypothesis testing. We found significantly contrasting gene expression patterns in exposed versus unexposed groups; 142 genes were up-regulated post-surgery among exposed patients, and down-regulated post-surgery among unexposed patients. Significantly enriched pathways included genes that respond to progesterone, cellular stress, nonsense-mediated decay of proteins and negative regulation of inflammatory response. These results suggest that cellular stress is modulated by hydroxyprogesterone. Network analysis revealed that UBC, a mediator of stress response, to be a major node to which many of the significantly altered genes connect.

Conclusions

Our study suggests that pre-operative exposure to progesterone favourably modulates the effect of surgical stress, and this might underlie its beneficial effect when administered prior to surgery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. https://doi.org/10.1002/ijc.29210

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Barry PA, Schiavon G (2015) Primary systemic treatment in the management of operable breast cancer: best surgical approach for diagnosis, biological evaluation, and research. J Natl Cancer Inst Monogr 51:4–8. https://doi.org/10.1093/jncimonographs/lgv008

    Article  Google Scholar 

  3. 3.

    Lemon HM, Rodriguez-Sierra JF (1996) Timing of breast cancer surgery during the luteal menstrual phase may improve prognosis. Nebraska Med J 81(3):73–78

    CAS  Google Scholar 

  4. 4.

    Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocr Rev 18(4):502–519. https://doi.org/10.1210/edrv.18.4.0308

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Badwe R, Hawaldar R, Parmar V, Nadkarni M, Shet T, Desai S, Gupta S, Jalali R, Vanmali V, Dikshit R, Mittra I (2011) Single-injection depot progesterone before surgery and survival in women with operable breast cancer: a randomized controlled trial. J Clin Oncol 29(21):2845–2851. https://doi.org/10.1200/jco.2010.33.0738

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578. https://doi.org/10.1038/nprot.2012.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. https://doi.org/10.1038/nbt.1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Benjamini Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57(1):289–300

    Google Scholar 

  10. 10.

    Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97. https://doi.org/10.1093/nar/gkw377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinfo 14:128. https://doi.org/10.1186/1471-2105-14-128

    Article  Google Scholar 

  12. 12.

    Xia J, Gill EE, Hancock RE (2015) Network analyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10(6):823–844. https://doi.org/10.1038/nprot.2015.052

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Caradec J, Sirab N, Keumeugni C, Moutereau S, Chimingqi M, Matar C, Revaud D, Bah M, Manivet P, Conti M, Loric S (2010) ‘Desperate house genes’: the dramatic example of hypoxia. Br J Cancer 102(6):1037–1043. https://doi.org/10.1038/sj.bjc.6605573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Glenisson M, Vacher S, Callens C, Susini A, Cizeron-Clairac G, Le Scodan R, Meseure D, Lerebours F, Spyratos F, Lidereau R, Bieche I (2012) Identification of new candidate therapeutic target genes in triple-negative breast cancer. Genes Cancer 3(1):63–70. https://doi.org/10.1177/1947601912449832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Rubel CA, Lanz RB, Kommagani R, Franco HL, Lydon JP, DeMayo FJ (2012) Research resource: genome-wide profiling of progesterone receptor binding in the mouse uterus. Mol Endocrinol 26(8):1428–1442. https://doi.org/10.1210/me.2011-1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Kalkhoff RK (1982) Metabolic effects of progesterone. Am J Obstet Gynecol 142(6 Pt 2):735–738

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Yang YC, Johnson MP, Schorpp KM, Boen CE, Harris KM (2017) Young adult risk factors for cancer: obesity, inflammation, and sociobehavioral mechanisms. Am J Prev Med 53(3S1):S21–S29. https://doi.org/10.1016/j.amepre.2017.04.025

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vona-Davis L, Rose DP (2013) The obesity-inflammation-eicosanoid axis in breast cancer. J Mammary Gland Biol Neoplasia 18(3–4):291–307. https://doi.org/10.1007/s10911-013-9299-z

    Article  PubMed  Google Scholar 

  20. 20.

    Sun X, Glynn DJ, Hodson LJ, Huo C, Britt K, Thompson EW, Woolford L, Evdokiou A, Pollard JW, Robertson SA, Ingman WV (2017) CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model. Breast Cancer Research 19(1):4. https://doi.org/10.1186/s13058-016-0796-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79(3–4):123–130

    PubMed  CAS  Google Scholar 

  22. 22.

    Afrasiabi K, Zhou YH, Fleischman A (2015) Chronic inflammation: is it the driver or is it paving the road for malignant transformation? Genes cancer 6(5-6):214–219. https://doi.org/10.18632/genesandcancer.64

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  23. 23.

    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. https://doi.org/10.1016/j.cell.2010.01.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Retsky MW, Demicheli R (2017) Perioperative Inflammation as Triggering Origin of Metastasis Development, 1st edn. Springer International Publishing, Berlin

    Book  Google Scholar 

  25. 25.

    Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9(5):361–371. https://doi.org/10.1038/nrc2628

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Leek RD, Landers R, Fox SB, Ng F, Harris AL, Lewis CE (1998) Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer 77(12):2246–2251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Baumgarten SC, Frasor J (2012) Minireview: inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 26(3):360–371. https://doi.org/10.1210/me.2011-1302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–311. https://doi.org/10.1038/nature01874

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Subramanian M, Pusphendran CK, Tarachand U, Devasagayam TP (1993) Gestation confers temporary resistance to peroxidation in the maternal rat brain. Neurosci Lett 155(2):151–154

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J (2008) Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology 149(6):3167–3175. https://doi.org/10.1210/en.2007-1227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Karatepe O, Altiok M, Battal M, Kamali G, Kemik A, Aydin T, Karahan S (2012) The effect of progesterone in the prevention of the chemically induced experimental colitis in rats. Acta Cir Bras 27(1):23–29

    Article  PubMed  Google Scholar 

  33. 33.

    Dhote VV, Balaraman R (2007) Gender specific effect of progesterone on myocardial ischemia/reperfusion injury in rats. Life Sci 81(3):188–197. https://doi.org/10.1016/j.lfs.2007.05.010

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Jiang C, Wang J, Li X, Liu C, Chen N, Hao Y (2009) Progesterone exerts neuroprotective effects by inhibiting inflammatory response after stroke. Inflamm Res 58(9):619–624. https://doi.org/10.1007/s00011-009-0032-8

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Ryu KY, Maehr R, Gilchrist CA, Long MA, Bouley DM, Mueller B, Ploegh HL, Kopito RR (2007) The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J 26(11):2693–2706. https://doi.org/10.1038/sj.emboj.7601722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY (2005) Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J 24(9):1739–1749. https://doi.org/10.1038/sj.emboj.7600656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Ms. Sriparna Biswas, Dr. Subrata Patra and Mr. Sumanta Sarkar for their help in performing the RNA-Seq laboratory experiments. We would like to thank Prof. Bidyut Roy, Mr. Badal De and Ms. Anindita Ray for helping in qPCR experiments. We would also like to thank Drs Nita Nair, Shalaka Joshi, Vani Parmar, Rohini Hawaldar and Vaibhav Vanmali for sample acquisition.

Funding

Authors acknowledge funding support from Department of Atomic Energy and Tata Memorial Centre for conducting the study. SC would like to acknowledge Indian Council for Medical Research for her doctoral research fellowship. RC is supported by a research fellowship from the Homi Bhabha National Institute (HBNI), Tata Memorial Centre. NG is supported by Prime Minister’s Fellowship Scheme for Doctoral Research, a public–private partnership between Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India and Confederation of Indian Industry (CII). PPM was supported by the J. C. Bose Fellowship of the Government of India, Department of Science and Technology.

Author information

Affiliations

Authors

Contributions

PP, PPM, RAB and SG conceived, designed and executed the study. RAB, RC, NG, AD and SG provided clinical samples for the study. SC and AM generated RNA-Seq data. SC, PP and PPM performed RNA-Seq data analysis. SC, RC, NG, AM, AD, PP, SG and PPM interpreted the results. SC, RC, NG, AD, SG, RAB, PPM and PP participated in writing of manuscript.

Corresponding authors

Correspondence to Sudeep Gupta, Rajendra A. Badwe, Partha P. Majumder or Priyanka Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was approved by the Institutional Ethics Committees of the Tata Memorial Centre, Mumbai, and the National Institute of Biomedical Genomics, Kalyani. Biospecimens were collected from breast cancer patients with written informed consent.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Chaubal, R., Maitra, A. et al. Pre-operative progesterone benefits operable breast cancer patients by modulating surgical stress. Breast Cancer Res Treat 170, 431–438 (2018). https://doi.org/10.1007/s10549-018-4749-3

Download citation

Keywords

  • Operable breast cancer
  • Hydroxyprogesterone
  • RNA-Seq
  • Network analysis