Skip to main content

Advertisement

Log in

Exercise and weight loss interventions and miRNA expression in women with breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Obesity and weight gain are associated with comorbidities including a higher risk of tumor recurrence and cancer-related deaths among breast cancer (BC) survivors; however, the underlying mechanisms linking obesity and cancer are poorly understood. Given the lack of clinically validated BC biomarkers, obesity and weight-loss studies utilize serum biomarkers as the intermediary outcomes of tumor recurrence. Studies have indicated microRNAs (miRNA)s are reliable biomarkers for cancer. We hypothesized that miRNA expression correlates with obesity and weight loss amongst BC survivors. This would yield insight into the biological pathways by which this association occurs, enabling more precise development of therapeutics.

Patients and methods

We correlated baseline body mass index (BMI) with serum miRNA expression in 121 BC survivors enrolled in the Hormones and Physical Exercise (HOPE) trial. We then analyzed expression of the 35 most abundant miRNAs from HOPE in a six-month randomized controlled weight-loss trial (Lifestyle, Exercise, and Nutrition; LEAN) in 100 BC survivors. Ingenuity pathway analysis (IPA) software was used to identify biological pathway targets of the BMI-associated and intervention-responsive miRNAs using predictive biomarkers.

Results

Pearson correlations in HOPE identified eight miRNAs associated with BMI, including miR-191-5p (r = − 0.22, p = 0.016) and miR-122-5p (r = 0.25, p = 0.0048). In the LEAN validation study, levels of miR-191-5p significantly increased during the six-month intervention (p = 0.082). Ingenuity Pathway Analysis identified “Estrogen-mediated S-phase entry” (HOPE p = 0.003; LEAN p < 0.001) and “Molecular mechanisms of cancer” (HOPE p = 0.02; LEAN p < 0.001) as the top canonical pathways that significantly correlated with BMI-associated and intervention-responsive miRNAs and contain obesity and cancer-relevant genes including the E2F family of transcription factors and CCND1, which have been implicated in sporadic BC.

Conclusion

While the association between obesity and BC recurrence and mortality has been demonstrated in the literature, mechanisms underlying the link between weight gain and cancer are unclear. Using two independent clinical trials, we identified novel miRNAs associative to BMI and weight loss that contribute to the development of cancer. Predictive modeling of miRNA targets identified multiple canonical pathways associated with cancer, highlighting potential mechanisms explaining the link between BMI and increased cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Desantis C, Siegel R, Bandi P et al (2011) Breast cancer statistics, 2011. Cancer 61:409–418

    Google Scholar 

  2. Eheman CR, Shaw KM, Ryerson AB et al (2009) The changing incidence of in situ and invasive ductal and lobular breast carcinomas: United States, 1999–2004. Cancer Epidemiol Biomarkers Prev 18:1763–1769

    Article  PubMed  Google Scholar 

  3. Youlden DR, Cramb SM, Dunn NAM et al (2012) The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol 36:237–248

    Article  PubMed  Google Scholar 

  4. Martin AM, Weber BL (2000) Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 92:1126–1135

    Article  PubMed  CAS  Google Scholar 

  5. Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366:1121–1131

    Article  PubMed  Google Scholar 

  6. Amadou A, Hainaut P, Romieu I (2013) Role of obesity in the risk of breast cancer: Lessons from anthropometry J. Oncol. https://doi.org/10.1155/2013/906495

    Article  Google Scholar 

  7. Friedenreich CM (2001) Review of anthropometric factors and breast cancer risk. Eur J Cancer Prev 10:15–32

    Article  PubMed  CAS  Google Scholar 

  8. Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345

    Article  PubMed  CAS  Google Scholar 

  9. Castello A, Martin M, Ruiz A et al (2015) Lower breast cancer risk among women following the world cancer research fund and american institute for cancer research lifestyle recommendations: EpiGEICAM case-control study. PLoS ONE 10:e0126096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shapira N (2017) The potential contribution of dietary factors to breast cancer prevention. Eur J Cancer Prev 26(5):385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nomura SJO, Inoue-Choi M, Lazovich D et al (2016) WCRF/AICR recommendation adherence and breast cancer incidence among postmenopausal women with and without non-modifiable risk factors. Int J Cancer 138:2602–2615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sternfeld B, Weltzien E, Quesenberry CP et al (2009) Physical activity and risk of recurrence and mortality in breast cancer survivors: findings from the LACE study. Cancer Epidemiol Biomarkers Prev 18:87–95

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kroenke CH, Chen WY, Rosner B et al (2005) Weight, weight gain, and survival after breast cancer diagnosis. J Clin Oncol 23:1370–1378

    Article  PubMed  Google Scholar 

  14. Neuhouser ML, Aragaki AK, Prentice RL et al (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk. JAMA Oncol 1:611

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greenlee H, Shi Z, Sardo Molmenti CL et al (2016) Trends in obesity prevalence in adults with a history of cancer: results from the US national health interview survey, 1997 to 2014. J Clin Oncol 34:3133–3140

    Article  PubMed  PubMed Central  Google Scholar 

  16. Caan BJ, Kwan ML, Shu XO et al (2012) Weight change and survival after breast cancer in the after breast cancer pooling project. Cancer Epidemiol Biomarkers Prev 21:1260–1271

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen X, Lu W, Zheng W et al (2010) Obesity and weight change in relation to breast cancer survival. Breast Cancer Res Treat 122:823–833

    Article  PubMed  PubMed Central  Google Scholar 

  18. De Pergola G, Silvestris F (2013) Obesity as a major risk factor for cancer. J Obes. https://doi.org/10.1155/2013/291546

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stephenson GD, Rose DP (2003) Breast cancer and obesity: an update. Nutr Cancer 45:1–16

    Article  PubMed  CAS  Google Scholar 

  20. Baer C, Claus R, Plass C (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73:473–477

    Article  PubMed  CAS  Google Scholar 

  21. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  PubMed  CAS  Google Scholar 

  22. Visone R, Croce CM (2009) MiRNAs and Cancer. Am J Pathol 174:1131–1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fabbri M, Calin GA (2010) Epigenetics and miRNAs in Human Cancer. Adv Gene 70:87–99

    CAS  Google Scholar 

  24. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  25. Adams BD, Kasinski AL, Slack FJ (2014) Aberrant regulation and function of microRNAs in cancer. Curr Biol 24(16):R762–R776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adams B, Parsons C, Walker L et al (2017) Targeting noncoding RNAs in disease. J Clin Investig 127(3):761–771

    Article  PubMed  PubMed Central  Google Scholar 

  27. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27:5848–5856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Slack FJ, Weidhaas JB (2006) MicroRNAs as a potential magic bullet in cancer. Futur Oncol 2:73–82

    Article  CAS  Google Scholar 

  29. Trang P, Weidhaas JB, Slack FJ (2009) MicroRNAs as potential cancer therapeutics. Oncogene 27:S52–S57

    Article  CAS  Google Scholar 

  30. van Schooneveld E, Wildiers H, Vergote I et al (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Adams BD, Parsons C, Slack FJ (2016) The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas. Expert Opin Ther Targets 20:737–753

    Article  PubMed  CAS  Google Scholar 

  32. Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  PubMed  CAS  Google Scholar 

  33. Heneghan HM, Miller N, Kerin MJ (2010) MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 10:543–550

    Article  PubMed  CAS  Google Scholar 

  34. McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Irwin ML, Cartmel B, Gross CP et al (2015) Randomized exercise trial of aromatase inhibitor-induced arthralgia in breast cancer survivors. J Clin Oncol 33:1104–1111

    Article  PubMed  Google Scholar 

  36. Harrigan M, Cartmel B, Loftfield E et al (2016) Randomized trial comparing telephone versus in-person weight loss counseling on body composition and circulating biomarkers in women treated for breast cancer: the lifestyle, exercise, and nutrition (LEAN) study. J Clin Oncol 34:669–676

    Article  PubMed  Google Scholar 

  37. Irwin ML, Alvarez-Reeves M, Cadmus L et al (2009) Exercise improves body fat, lean mass, and bone mass in breast cancer survivors. Obesity 17:1534–1541

    Article  PubMed  PubMed Central  Google Scholar 

  38. Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403

    Article  PubMed  CAS  Google Scholar 

  39. Rock CL, Doyle C, Meyerhardt W et al (2012) Nutrition and Physical Activity Guidelines for Cancer Survivors. CA Cancer J Clin 62:243–274

    Article  PubMed  Google Scholar 

  40. US Department of Health and Human Services and US Department of Agriculture (2015) Dietary guidelines for Americans, 2015–2020. vol 232, 8th edn p 71 http://health.gov/dietaryguidelines/2015/guidelines/

  41. Rogers D, Leonberg BL, Broadhurst CB et al (2002) 2000 Commission on dietetic registration dietetics practice audit. J Am Diet Assoc 102:270–292

    Article  PubMed  Google Scholar 

  42. Griswold K, Rogers D, Sauer KL et al (2016) Entry-level dietetics practice today: results from the 2015 commission on dietetic registration entry-level dietetics practice audit. J Acad Nutr Diet 116:1632–1684

    Article  PubMed  Google Scholar 

  43. Jones SB, Thomas GA, Hesselsweet SD et al (2013) Effect of exercise on markers of inflammation in breast cancer survivors: the yale exercise and survivorship study. Cancer Prev Res 6:109–118

    Article  CAS  Google Scholar 

  44. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817):1393–1396

    Article  PubMed  CAS  Google Scholar 

  45. Adams BD, Wali VB, Cheng CJ (2015) miR-34a Silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res 76(4):927–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chapin SC, Appleyard DC, Pregibon DC et al (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chemie—Int Ed 50:2289–2293

    Article  CAS  Google Scholar 

  47. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34

    Article  Google Scholar 

  48. Metheetrairut C, Adams BD (2016) Nallur Scel-mir-237 and its homologue, hsa-miR-125b, modulate the cellular response to ionizing radiation. Oncogene 36(4):512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Adams BD, Cowee DM, White BA (2009) The Role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-α (ERα) Signaling and a luminal Phenotype in MCF-7 Breast Cancer Cells. Mol Endocrinol 23:1215–1230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Adams B, Guttilla I, White B (2008) Involvement of MicroRNAs in breast cancer. Semin Reprod Med 26(6):522–536

    Article  PubMed  CAS  Google Scholar 

  51. Ling H, Li X, Yao CH et al (2013) The physiological and pathophysiological roles of adipocyte miRNAs. Biochem Cell Biol 91:195–202

    Article  PubMed  CAS  Google Scholar 

  52. Trajkovski M, Lodish H (2013) MicroRNA networks regulate development of brown adipocytes. Trends Endocrinol Metab 24:442–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chen L, Song J, Cui J et al (2013) Micrornas regulate adipocyte differentiation. Cell Biol Int 37:533–546

    Article  PubMed  CAS  Google Scholar 

  54. Cui J, Zhou B, Ross SA et al (2017) Nutrition, microRNAs, and human health. Adv Nutr An Int Rev J 8:105–112

    Article  Google Scholar 

  55. Sliwinska A, Kasinska MA, Drzewoski J (2017) MicroRNAs & metabolic disorders—where are we heading? Arch Med Sci 13:885–896

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nardelli C, Iaffaldano L, Pilone V (2017) Changes in the MicroRNA profile observed in the subcutaneous adipose tissue of obese patients after laparoscopic adjustable gastric banding. J Obes. https://doi.org/10.1155/2017/6754734

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ortega FJ, Mercader JM, Catalán V et al (2013) Targeting the circulating microRNA signature of obesity. Clin Chem 59:781–792

    Article  PubMed  CAS  Google Scholar 

  58. Blenkiron C, Goldstein LD, Thorne NP et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Witwer KW (2012) XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 9:1147–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. SAS Institute Inc (2014) SAS software 9.4. SAS Inst Inc Mark Co pp 1–25

  61. Da H, Lin FM, Wu WY (2011) MiRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169

    Article  CAS  Google Scholar 

  62. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Fong MY, Zhou W, Liu L et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Pola C (2013) Cancer: miR-22 attacks on several fronts. Nat Med 19:980

    Article  CAS  Google Scholar 

  65. Koufaris C, Valbuena GN, Pomyen Y et al (2016) Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene 35:2766–2776

    Article  PubMed  CAS  Google Scholar 

  66. Fan M, Sethuraman A, Brown M et al (2014) Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. Breast Cancer Res Treat 146:487–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Di Leva G, Piovan C, Gasparini P (2013) Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor Status. PLoS genet 9(3):e1003311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zheng R, Pan L, Gao J et al (2015) Prognostic value of miR-106b expression in breast cancer patients. J Surg Res 195:158–165

    Article  PubMed  CAS  Google Scholar 

  69. Ivanovska I, Ball AS, Diaz RL et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wei CY, Tan QX, Zhu X et al (2015) Expression of CDKN1A/p21 and TGFBR2 in breast cancer and their prognostic significance. Int J Clin Exp Pathol 8:14619–14629

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Bièche I, Olivi M, Noguès C et al (2002) Prognostic value of CCND1 gene status in sporadic breast tumours, as determined by real-time quantitative PCR assays. Br J Cancer 86:580–586

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kenemans P, Verstraeten RA, Verheijen RHM (2004) Oncogenic pathways in hereditary and sporadic breast cancer. Maturitas 49(1):34–43

    Article  PubMed  CAS  Google Scholar 

  73. Stich O, Rasiah C, Rauer S (2009) Paraneoplastic antibody during follow-up of a patient with anti-Ri-associated paraneoplastic neurological syndrome. Acta Neurol Scand 119:338–340

    Article  PubMed  CAS  Google Scholar 

  74. Zhang YA, Liu HN, Zhu JM et al (2016) RNA binding protein Nova1 promotes tumor growth in vivo and its potential mechanism as an oncogene may due to its interaction with GABAA Receptor-gamma2. J Biomed Sci 23:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Spiegelman BM, Flier JS (1996) Adipogenesis and obesity: rounding out the big picture. Cell 87:377–389

    Article  PubMed  CAS  Google Scholar 

  77. Jeffery E, Wing A, Holtrup B et al (2016) The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab 24:142–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. de sá PM, Richard AJ, Hang H et al (2017) Transcriptional regulation of adipogenesis. Compr Physiol 7:635–674

    Google Scholar 

  79. Cao Y (2007) Angiogenesis modulates adipogenesis and obesity. J Clin Invest 117:2362–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  PubMed  CAS  Google Scholar 

  81. Tachibana K, Yamasaki D, Ishimoto K (2008) The role of PPARs in cancer. PPAR Res. https://doi.org/10.1155/2008/102737

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dabydeen SA, Furth PA (2014) Genetically engineered ERα-positive breast cancer mouse models. Endocr Relat Cancer 21(3):R195–R208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Yao PL, Morales JL, Zhu B et al (2014) Activation of peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) inhibits human breast cancer cell line tumorigenicity. Mol Cancer Ther 13:1008–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ho GH, Calvano JE, Bisogna M et al (2001) Expression of E2F-1 and E2F-4 is reduced in primary and metastatic breast carcinomas*. Breast Cancer Res Treat 69:115–122

    Article  PubMed  CAS  Google Scholar 

  85. Bracken AP, Ciro M, Cocito A et al (2004) E2F target genes: unraveling the biology. Trends Biochem Sci 29:409–417

    Article  PubMed  CAS  Google Scholar 

  86. Julian LM, Blais A (2015) Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 6:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang L, Xu S, Lee JE et al (2012) Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J 32:45–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Portius D, Sobolewski C, Foti M (2017) MicroRNAs-dependent regulation of PPARs in metabolic diseases and cancers. PPAR Res. https://doi.org/10.1155/2017/7058424

    Article  PubMed  PubMed Central  Google Scholar 

  89. Johnson KC, Koestler DC, Cheng C et al (2014) Age-related DNA methylation in normal breast tissue and its relationship with invasive breast tumor methylation. Epigenetics 9:268–275

    Article  PubMed  CAS  Google Scholar 

  90. Narita M, Nũnez S, Heard E et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  91. Emmrich S, Pützer BM (2010) Checks and balances: E2F-microRNA crosstalk in cancer control. Cell Cycle 9:2555–2567

    Article  PubMed  CAS  Google Scholar 

  92. Gatfield D, Le Martelot G, Vejnar CE et al (2009) Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23:1313–1326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zheng L, Lv G, Sheng J et al (2010) Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-Î ± expression, a novel mechanism for the pathogenesis of NAFLD. J Gastroenterol Hepatol 25:156–163

    Article  PubMed  CAS  Google Scholar 

  94. Hatziapostolou M, Polytarchou C, Iliopoulos D (2013) MiRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab 24:361–373

    Article  PubMed  CAS  Google Scholar 

  95. Aguda BD, Kim Y, Piper-Hunter MG et al (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci 105:19678–19683

    Article  PubMed  PubMed Central  Google Scholar 

  96. Helwak A, Kudla G, Dudnakova T et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Nagpal N, Kulshreshtha R (2014) miR-191: An emerging player in disease biology. Front Genet 5:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Milagro FI, Miranda J, Portillo MP (2013) High-throughput sequencing of microRNAs in peripheral blood mononuclear Cells: identification of potential weight loss biomarkers. PLoS One 8(1):e54319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to B.D. Adams from NIH P50 CA196530, a Firefly Pilot Grant award, and from start-up funds through The RNA Institute, and The State University of New York. B.D. Adams is also President and CEO of The Brain Institute of America (brian.adams@braininstitueamerica.com) and holds patent interests with AUM LifeTech. B. Cartmel is a consultant/advisor for Pfizer. F. Li is supported by Yale CTSA grant UL1TR000142, and Yale Cancer Center Support Grant(CCSG/P30). M. Harrigan and T. Sanft are supported by grant NIH 1R01CA207753-01A1. T. Sanft is also a consultant/advisor to bioTheranostics. C.J. Cheng is currently an employee of Alexion Pharmaceuticals. L. Pusztai is supported by a Breast Cancer Research Foundation Award. M.L. Irwin is supported by grants from NCI R01CA132931, the American Institute for Cancer Research, and by the Breast Cancer Research Foundation, as well as through a Yale Cancer Center Support Grant P30CA016359, and a Clinical and Translational Science Award NCATS UL1TR000142. We thank Jessica Tytell, Irene G. Reed, and Elizabeth Posey for the critical reading of this manuscript. We thank Mike Tackett at Firefly for answering questions regarding miRNA detection within serum samples. Other authors have declared that no conflict of interest exists. This study analyzed data obtained from clinical trials NCT02056067 and NCT02109068.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Brian D. Adams, Melinda L. Irwin. Financial support: Brian D. Adams, Melinda L. Irwin. Provision of study materials or patients: Melinda L. Irwin. Collection and assembly of data: Brian D. Adams, Monica J. Hubal, Melinda L. Irwin. Data analysis and interpretation: all authors. Manuscript writing: all authors

Corresponding author

Correspondence to Melinda L. Irwin.

Ethics declarations

Conflicts of interest

B.D. Adams is President and CEO of The Brain Institute of America and holds patent interests with AUM LifeTech. Other authors have declared no conflicts of interest exist.

Clinical trial

This study analyzed data obtained from clinical trials Hormones and Physical Exercise (HOPE) Study; NCT02056067, https://clinicaltrials.gov/ct2/show/NCT02056067; and Lifestyle, Exercise and Nutrition (LEAN) Study; NCT02109068, https://clinicaltrials.gov/ct2/show/NCT02109068.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, B.D., Arem, H., Hubal, M.J. et al. Exercise and weight loss interventions and miRNA expression in women with breast cancer. Breast Cancer Res Treat 170, 55–67 (2018). https://doi.org/10.1007/s10549-018-4738-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4738-6

Keywords

Navigation