Skip to main content

Advertisement

Log in

Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

We aimed to evaluate macrophage infiltration and to identify the status of crown-like structures (CLSs) in mammary adipose tissue of human breast tissue in cases with and without breast cancer.

Methods

Breast adipose tissue was obtained from reduction mammoplasty (N = 56, Group 1), non-neoplastic breast tissue of breast cancer patients (N = 84, Group 2), and breast cancer with adipose stroma (N = 140, Group 3). Immunohistochemical staining of CD68 and CD163 was performed, and the infiltrating macrophages and CLSs within breast adipose tissue were evaluated.

Results

Group 3 had the largest number of CD68-positive (CD68+) and CD163-positive (CD163+) macrophages and CLSs within adipose tissue (P < 0.001). Among Group 3, cases with high levels of CD68+ and CD163+ macrophages commonly had a higher histologic grade (P = 0.016 and P = 0.045), and cases with CD163+ CLSs were correlated with old age (P = 0.042), estrogen receptor negativity (P = 0.013), human epidermal growth factor receptor-2 positivity (P = 0.043), and non-luminal A type (P = 0.039). Upon univariate analysis, high levels of CD163+ macrophages were associated with shorter disease-free survival in node-negative breast cancer patients (P = 0.033), and CD68+ CLSs were associated with shorter overall survival in node-positive breast cancer patients (P = 0.015).

Conclusions

CD68+ and/or CD163+ tumor-associated macrophage infiltration as well as CLSs are present in adipose tissue nearby the breast cancer lesion, and are associated with various clinicopathologic parameters of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TME:

Tumor microenvironment

ECM:

Extracellular matrix

TAM:

Tumor-associated macrophages

CLS:

Crown-like structures

BMI:

Body Mass Index

DFS:

Disease-free survival

OS:

Overall survival

References

  1. Burugu S, Asleh-Aburaya K, Nielsen TO (2017) Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer 24(1):3–15. https://doi.org/10.1007/s12282-016-0698-z

    Article  PubMed  Google Scholar 

  2. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. https://doi.org/10.1158/0008-5472.can-05-4005

    Article  PubMed  CAS  Google Scholar 

  3. Solinas G, Germano G, Mantovani A et al (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. https://doi.org/10.1189/jlb.0609385

    Article  PubMed  CAS  Google Scholar 

  4. Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80(4):705–713. https://doi.org/10.1189/jlb.1105656

    Article  PubMed  CAS  Google Scholar 

  5. Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. https://doi.org/10.1016/j.it.2004.09.015

    Article  PubMed  CAS  Google Scholar 

  6. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:816460. https://doi.org/10.1155/2015/816460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Duluc D, Delneste Y, Tan F et al (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110(13):4319–4330. https://doi.org/10.1182/blood-2007-02-072587

    Article  PubMed  CAS  Google Scholar 

  8. Vandeweyer E, Hertens D (2002) Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 184(2):181–184. https://doi.org/10.1016/s0940-9602(02)80016-4

    Article  PubMed  Google Scholar 

  9. Ramsay DT, Kent JC, Hartmann RA et al (2005) Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat 206(6):525–534. https://doi.org/10.1111/j.1469-7580.2005.00417.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Choi J, Cha YJ, Koo JS (2017) Adipocyte biology in breast cancer: from silent bystander to active facilitator. Prog Lipid Res 69:11–20. https://doi.org/10.1016/j.plipres.2017.11.002

    Article  PubMed  CAS  Google Scholar 

  11. Kang YE, Kim JM, Joung KH et al (2016) The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS ONE 11(4):e0154003. https://doi.org/10.1371/journal.pone.0154003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112(12):1796–1808. https://doi.org/10.1172/jci19246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Murano I, Barbatelli G, Parisani V et al (2008) Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49(7):1562–1568. https://doi.org/10.1194/jlr.M800019-JLR200

    Article  PubMed  CAS  Google Scholar 

  14. Iyengar NM, Morris PG, Zhou XK et al (2015) Menopause is a determinant of breast adipose inflammation. Cancer Prev Res 8(5):349–358. https://doi.org/10.1158/1940-6207.capr-14-0243

    Article  CAS  Google Scholar 

  15. Iyengar NM, Zhou XK, Gucalp A et al (2016) Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin Cancer Res 22(9):2283–2289. https://doi.org/10.1158/1078-0432.ccr-15-2239

    Article  PubMed  CAS  Google Scholar 

  16. Glass CK, Olefsky JM (2012) Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab 15(5):635–645. https://doi.org/10.1016/j.cmet.2012.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jung UJ, Choi MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15(4):6184–6223. https://doi.org/10.3390/ijms15046184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542(7640):177–185. https://doi.org/10.1038/nature21363

    Article  PubMed  CAS  Google Scholar 

  19. Mullooly M, Yang HP, Falk RT et al (2017) Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients. Breast Cancer Res 19(1):8. https://doi.org/10.1186/s13058-016-0791-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Harris JA, Jain S, Ren Q et al (2012) CD163 versus CD68 in tumor associated macrophages of classical Hodgkin lymphoma. Diagn Pathol 7:12. https://doi.org/10.1186/1746-1596-7-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795. https://doi.org/10.1200/jco.2009.25.6529

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145. https://doi.org/10.1200/jco.2006.09.2775

    Article  PubMed  CAS  Google Scholar 

  23. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. https://doi.org/10.1093/annonc/mdr304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Iyengar NM, Gucalp A, Dannenberg AJ et al (2016) Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol 34(35):4270–4276. https://doi.org/10.1200/jco.2016.67.4283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Koru-Sengul T, Santander AM, Miao F et al (2016) Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians. Breast Cancer Res Treat 158(1):113–126. https://doi.org/10.1007/s10549-016-3847-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lindsten T, Hedbrant A, Ramberg A et al (2017) Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int J Oncol 51(1):104–114. https://doi.org/10.3892/ijo.2017.3996

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carter JM, Hoskin TL, Pena MA et al (2017) Macrophagic “crown-like structures” are associated with an increased risk of breast cancer in benign breast disease. Cancer Prev Res. https://doi.org/10.1158/1940-6207.capr-17-0245

    Article  Google Scholar 

  28. Andarawewa KL, Motrescu ER, Chenard MP et al (2005) Stromelysin-3 is a potent negative regulator of adipogenesis participating to cancer cell-adipocyte interaction/crosstalk at the tumor invasive front. Cancer Res 65(23):10862–10871. https://doi.org/10.1158/0008-5472.can-05-1231

    Article  PubMed  CAS  Google Scholar 

  29. Dirat B, Bochet L, Dabek M et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455–2465. https://doi.org/10.1158/0008-5472.can-10-3323

    Article  PubMed  CAS  Google Scholar 

  30. Medrek C, Ponten F, Jirstrom K et al (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306. https://doi.org/10.1186/1471-2407-12-306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Leek RD, Lewis CE, Whitehouse R et al (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    PubMed  CAS  Google Scholar 

  32. Kamper P, Bendix K, Hamilton-Dutoit S et al (2011) Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica 96(2):269–276. https://doi.org/10.3324/haematol.2010.031542

    Article  PubMed  Google Scholar 

  33. Zaki MA, Wada N, Ikeda J et al (2011) Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma. Virchows Arch 459(4):361–366. https://doi.org/10.1007/s00428-011-1140-8

    Article  PubMed  CAS  Google Scholar 

  34. Ino Y, Yamazaki-Itoh R, Shimada K et al (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–923. https://doi.org/10.1038/bjc.2013.32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Herrera M, Herrera A, Dominguez G et al (2013) Cancer-associated fibroblast and M2 macrophage markers together predict outcome in colorectal cancer patients. Cancer Sci 104(4):437–444. https://doi.org/10.1111/cas.12096

    Article  PubMed  CAS  Google Scholar 

  36. Lan C, Huang X, Lin S et al (2013) Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol Cancer Res Treat 12(3):259–267. https://doi.org/10.7785/tcrt.2012.500312

    Article  PubMed  CAS  Google Scholar 

  37. Ojalvo LS, King W, Cox D et al (2009) High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am J Pathol 174(3):1048–1064. https://doi.org/10.2353/ajpath.2009.080676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pucci F, Venneri MA, Biziato D et al (2009) A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114(4):901–914. https://doi.org/10.1182/blood-2009-01-200931

    Article  PubMed  CAS  Google Scholar 

  39. Movahedi K, Laoui D, Gysemans C et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70(14):5728–5739. https://doi.org/10.1158/0008-5472.can-09-4672

    Article  PubMed  CAS  Google Scholar 

  40. Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G et al (2006) Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 211(6–8):487–501. https://doi.org/10.1016/j.imbio.2006.06.002

    Article  PubMed  CAS  Google Scholar 

  41. Laoui D, Movahedi K, Van Overmeire E et al (2011) Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol 55(7–9):861–867. https://doi.org/10.1387/ijdb.113371dl

    Article  PubMed  Google Scholar 

  42. Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. https://doi.org/10.1016/j.ejca.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  43. Mantovani A, Schioppa T, Porta C et al (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322. https://doi.org/10.1007/s10555-006-9001-7

    Article  PubMed  Google Scholar 

  44. Allavena P, Sica A, Garlanda C et al (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161. https://doi.org/10.1111/j.1600-065X.2008.00607.x

    Article  PubMed  CAS  Google Scholar 

  45. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795. https://doi.org/10.1172/JCI59643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265. https://doi.org/10.1002/path.1027

    Article  PubMed  CAS  Google Scholar 

  47. Neuhouser ML, Aragaki AK, Prentice RL et al (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol 1(5):611–621. https://doi.org/10.1001/jamaoncol.2015.1546

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a faculty research grant from Yonsei University College of Medicine for 2013 (6-2016-0163).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JSK. Administrative support: JSK. Collection and assembly of data: All authors. Data analysis and interpretation: All authors. Drafting the manuscript or revising it critically for important intellectual content: YJC and JSK. Final approval of the manuscript: All authors

Corresponding author

Correspondence to Ja Seung Koo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, Y.J., Kim, ES. & Koo, J.S. Tumor-associated macrophages and crown-like structures in adipose tissue in breast cancer. Breast Cancer Res Treat 170, 15–25 (2018). https://doi.org/10.1007/s10549-018-4722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4722-1

Keywords

Navigation