Skip to main content

Advertisement

Log in

Assessment of the functional impact of germline BRCA1/2 variants located in non-coding regions in families with breast and/or ovarian cancer predisposition

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The molecular mechanism of breast and/or ovarian cancer susceptibility remains unclear in the majority of patients. While germline mutations in the regulatory non-coding regions of BRCA1 and BRCA2 genes have been described, screening has generally been limited to coding regions. The aim of this study was to evaluate the contribution of BRCA1/2 non-coding variants.

Methods

Four BRCA1/2 non-coding regions were screened using high-resolution melting analysis/Sanger sequencing or next-generation sequencing on DNA extracted from index cases with breast and ovarian cancer predisposition (3926 for BRCA1 and 3910 for BRCA2). The impact of a set of variants on BRCA1/2 gene regulation was evaluated by site-directed mutagenesis, transfection, followed by Luciferase gene reporter assay.

Results

We identified a total of 117 variants and tested twelve BRCA1 and 8 BRCA2 variants mapping to promoter and intronic regions. We highlighted two neighboring BRCA1 promoter variants (c.-130del; c.-125C > T) and one BRCA2 promoter variants (c.-296C > T) inhibiting significantly the promoter activity. In the functional assays, a regulating region within the intron 12 was found with the same enhancing impact as within the intron 2. Furthermore, the variants c.81-3980A > G and c.4186-2022C > T suppress the positive effect of the introns 2 and 12, respectively, on the BRCA1 promoter activity. We also found some variants inducing the promoter activities.

Conclusion

In this study, we highlighted some variants among many, modulating negatively the promoter activity of BRCA1 or 2 and thus having a potential impact on the risk of developing cancer. This selection makes it possible to conduct future validation studies on a limited number of variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  CAS  PubMed  Google Scholar 

  2. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792. https://doi.org/10.1038/378789a0

    Article  CAS  PubMed  Google Scholar 

  3. Castéra L, Krieger S, Rousselin A et al (2014) Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet EJHG 22:1305–1313. https://doi.org/10.1038/ejhg.2014.16

    Article  PubMed  Google Scholar 

  4. Caminsky NG, Mucaki EJ, Perri AM et al (2016) Prioritizing variants in complete Hereditary Breast and Ovarian Cancer (HBOC) genes in patients lacking known BRCA mutations. Hum Mutat 37:640–652. https://doi.org/10.1002/humu.22972

    Article  CAS  PubMed  Google Scholar 

  5. Mucaki EJ, Caminsky NG, Perri AM et al (2016) A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genom 9:19. https://doi.org/10.1186/s12920-016-0178-5

    Article  Google Scholar 

  6. Puget N, Stoppa-Lyonnet D, Sinilnikova OM et al (1999) Screening for germ-line rearrangements and regulatory mutations in BRCA1 led to the identification of four new deletions. Cancer Res 59:455–461

    CAS  PubMed  Google Scholar 

  7. Brown MA, Lo L-J, Catteau A et al (2002) Germline BRCA1 promoter deletions in UK and Australian familial breast cancer patients: identification of a novel deletion consistent with BRCA1:psiBRCA1 recombination. Hum Mutat 19:435–442. https://doi.org/10.1002/humu.10055

    Article  CAS  PubMed  Google Scholar 

  8. Walsh T, Casadei S, Coats KH et al (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295:1379–1388. https://doi.org/10.1001/jama.295.12.1379

    Article  CAS  PubMed  Google Scholar 

  9. Wardrop SL, Brown MA, kConFab Investigators (2005) Identification of two evolutionarily conserved and functional regulatory elements in intron 2 of the human BRCA1 gene. Genomics 86:316–328. https://doi.org/10.1016/j.ygeno.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Lu C, Min D et al (2007) A mutation in the 5′ untranslated region of the BRCA1 gene in sporadic breast cancer causes downregulation of translation efficiency. J Int Med Res 35:564–573

    Article  CAS  PubMed  Google Scholar 

  11. Marino M, Rabacchi C, Simone ML et al (2009) A novel deletion of BRCA1 gene that eliminates the ATG initiation codon without affecting the promoter region. Clin Chim Acta 403:249–253. https://doi.org/10.1016/j.cca.2009.02.020

    Article  CAS  PubMed  Google Scholar 

  12. Pongsavee M, Yamkamon V, Dakeng S et al (2009) The BRCA1 3′-UTR: 5711 + 421T/T_5711 + 1286T/T genotype is a possible breast and ovarian cancer risk factor. Genet Test Mol Biomark 13:307–317. https://doi.org/10.1089/gtmb.2008.0127

    Article  CAS  Google Scholar 

  13. Lheureux S, Lambert B, Krieger S et al (2011) Two novel variants in the 3′UTR of the BRCA1 gene in familial breast and/or ovarian cancer. Breast Cancer Res Treat 125:885–891. https://doi.org/10.1007/s10549-010-1165-8

    Article  CAS  PubMed  Google Scholar 

  14. Pelletier C, Speed WC, Paranjape T et al (2011) Rare BRCA1 haplotypes including 3′UTR SNPs associated with breast cancer risk. Cell Cycle Georget Tex 10:90–99. https://doi.org/10.4161/cc.10.1.14359

    Article  CAS  Google Scholar 

  15. Pamuła J, Krześniak M, Zientek H et al (2006) Functional impact of sequence alterations found in BRCA1 promoter/5′UTR region in breast/Ovarian Cancer Families from Upper Silesia, Poland. Hered Cancer Clin Pract 4:20–24. https://doi.org/10.1186/1897-4287-4-1-20

    Article  PubMed  PubMed Central  Google Scholar 

  16. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961. https://doi.org/10.1126/science.1230062

    Article  CAS  PubMed  Google Scholar 

  17. Eisinger F, Alby N, Bremond A et al (1999) Inserm ad hoc committee: recommendations for the management of women with a genetic risk for developing cancer of the breast and/or the ovary. Bull Cancer 86:307–313 (Paris)

    CAS  PubMed  Google Scholar 

  18. Eisinger F, Bressac B, Castaigne D et al (2006) Identification and management of hereditary breast-ovarian cancers (2004 update). Pathol Biol 54:230–250. https://doi.org/10.1016/j.patbio.2006.02.002 (Paris)

    Article  CAS  PubMed  Google Scholar 

  19. Eisinger F, Bressac B, Castaigne D et al (2004) Identification and management of hereditary predisposition to cancer of the breast and the ovary (update 2004). Bull Cancer 91:219–237 (Paris)

    PubMed  Google Scholar 

  20. Caputo S, Benboudjema L, Sinilnikova O et al (2012) Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases. Nucleic Acids Res 40:D992–D1002. https://doi.org/10.1093/nar/gkr1160

    Article  CAS  PubMed  Google Scholar 

  21. Tarabeux J, Zeitouni B, Moncoutier V et al (2014) Streamlined ion torrent PGM-based diagnostics: BRCA1 and BRCA2 genes as a model. Eur J Hum Genet EJHG 22:535–541. https://doi.org/10.1038/ejhg.2013.181

    Article  CAS  PubMed  Google Scholar 

  22. Collet A, Tarabeux J, Girard E et al (2015) Pros and cons of HaloPlex enrichment in cancer predisposition genetic diagnosis. Genet 2:263–280. https://doi.org/10.3934/genet.2015.4.263

    Article  Google Scholar 

  23. Spurdle AB, Healey S, Devereau A et al (2012) ENIGMA—evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat 33:2–7. https://doi.org/10.1002/humu.21628

    Article  CAS  PubMed  Google Scholar 

  24. Saunus JM, French JD, Edwards SL et al (2008) Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Res 68:9469–9478. https://doi.org/10.1158/0008-5472.CAN-08-1159

    Article  CAS  PubMed  Google Scholar 

  25. Tan-Wong SM, French JD, Proudfoot NJ, Brown MA (2008) Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc Natl Acad Sci USA 105:5160–5165. https://doi.org/10.1073/pnas.0801048105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coulet F, Pires F, Rouleau E et al (2010) A one-step prescreening for point mutations and large rearrangement in BRCA1 and BRCA2 genes using quantitative polymerase chain reaction and high-resolution melting curve analysis. Genet Test Mol Biomark 14:677–690. https://doi.org/10.1089/gtmb.2009.0183

    Article  CAS  Google Scholar 

  27. Consortium EA, Lek M, Karczewski K, et al (2015) Analysis of protein-coding genetic variation in 60,706 humans. bioRxiv 030338. https://doi.org/10.1101/030338

  28. Aken BL, Ayling S, Barrell D et al (2016) The Ensembl gene annotation system. Database. https://doi.org/10.1093/database/baw093

    PubMed  PubMed Central  Google Scholar 

  29. Shirley BC, Mucaki EJ, Whitehead T et al (2013) Interpretation, stratification and evidence for sequence variants affecting mRNA splicing in complete human genome sequences. Genom Proteom Bioinform 11:77–85. https://doi.org/10.1016/j.gpb.2013.01.008

    Article  CAS  Google Scholar 

  30. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  31. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265–2275. https://doi.org/10.1038/nprot.2007.314

    Article  CAS  PubMed  Google Scholar 

  32. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110–121. https://doi.org/10.1101/gr.097857.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anczuków O, Buisson M, Léoné M et al (2012) BRCA2 deep intronic mutation causing activation of a cryptic exon: opening toward a new preventive therapeutic strategy. Clin Cancer Res Off J Am Assoc Cancer Res 18:4903–4909. https://doi.org/10.1158/1078-0432.CCR-12-1100

    Article  Google Scholar 

  34. Garcia AI, Buisson M, Damiola F et al (2016) Mutation screening of MIR146A/B and BRCA1/2 3′-UTRs in the GENESIS study. Eur J Hum Genet EJHG. https://doi.org/10.1038/ejhg.2015.284

    Google Scholar 

  35. Lu R, Mucaki EJ, Rogan PK (2017) Discovery and validation of information theory-based transcription factor and cofactor binding site motifs. Nucleic Acids Res 45:e27. https://doi.org/10.1093/nar/gkw1036

    Article  PubMed  Google Scholar 

  36. Xu CF, Brown MA, Chambers JA et al (1995) Distinct transcription start sites generate two forms of BRCA1 mRNA. Hum Mol Genet 4:2259–2264

    Article  CAS  PubMed  Google Scholar 

  37. Gallagher DJ, Gaudet MM, Pal P et al (2010) Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res Off J Am Assoc Cancer Res 16:2115–2121. https://doi.org/10.1158/1078-0432.CCR-09-2871

    Article  CAS  Google Scholar 

  38. Staff S, Isola J, Tanner M (2003) Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res 63:4978–4983

    CAS  PubMed  Google Scholar 

  39. Hafez MM, Al-Shabanah OA, Al-Rejaie SS et al (2015) Increased hypermethylation of glutathione S-transferase P1, DNA-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females. Asian Pac J Cancer Prev APJCP 16:541–549

    Article  PubMed  Google Scholar 

  40. Ward RL, Dobbins T, Lindor NM et al (2013) Identification of constitutional MLH1 epimutations and promoter variants in colorectal cancer patients from the Colon Cancer Family Registry. Genet Med Off J Am Coll Med Genet 15:25–35. https://doi.org/10.1038/gim.2012.91

    CAS  Google Scholar 

  41. Gylling A, Ridanpää M, Vierimaa O et al (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124:2333–2340. https://doi.org/10.1002/ijc.24230

    Article  CAS  PubMed  Google Scholar 

  42. Hesson LB, Packham D, Kwok C-T et al (2015) Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression. Hum Mutat 36:622–630. https://doi.org/10.1002/humu.22785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hansmann T, Pliushch G, Leubner M et al (2012) Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Hum Mol Genet 21:4669–4679. https://doi.org/10.1093/hmg/dds308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the French oncogeneticists, the UNICANCER Genetic Group leads by Dr Catherine Nogues, and probands for their cooperation. This work was supported by the Association pour la Recherche en Cancérologie de Saint-Cloud (ARCS), by the National Cancer Institute (INCa: INCA-DGOS_8706) and by the National Health and Medical Research Council (Australia) Grant #1104808. We gratefully acknowledge Dr Lisa Golmard for her help during the patients screening.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to F. Lallemand or E. Rouleau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, E.S., Caputo, S.M., Castera, L. et al. Assessment of the functional impact of germline BRCA1/2 variants located in non-coding regions in families with breast and/or ovarian cancer predisposition. Breast Cancer Res Treat 168, 311–325 (2018). https://doi.org/10.1007/s10549-017-4602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4602-0

Keywords

Navigation