Dietary intake of soy and cruciferous vegetables and treatment-related symptoms in Chinese-American and non-Hispanic White breast cancer survivors

A Correction to this article is available

This article has been updated

Abstract

Purpose

This project was undertaken to examine the association between dietary intake of soy or cruciferous vegetables and breast cancer treatment-related symptoms among Chinese-American (CA) and Non-Hispanic White (NHW) breast cancer survivors.

Methods

This cross-sectional study included 192 CA and 173 NHW female breast cancer survivors (stages 0–III, diagnosed between 2006 and 2012) recruited from two California cancer registries, who had completed primary treatment. Patient-reported data on treatment-related symptoms and potential covariates were collected via telephone interviews. Dietary data were ascertained by mailed questionnaires. The outcomes evaluated were menopausal symptoms (hot flashes, night sweats, vaginal dryness, vaginal discharge), joint problems, fatigue, hair thinning/loss, and memory problems. Associations between soy and cruciferous vegetables and symptoms were assessed using logistic regression. Analyses were further stratified by race/ethnicity and endocrine therapy usage (non-user, tamoxifen, aromatase inhibitors).

Results

Soy food and cruciferous vegetable intake ranged from no intake to 431 and 865 g/day, respectively, and was higher in CA survivors. Higher soy food intake was associated with lower odds of menopausal symptoms (≥ 24.0 vs. 0 g/day, OR 0.51, 95% CI 0.25, 1.03), and fatigue (≥ 24.0 vs. 0 g/day, OR 0.43, 95% CI 0.22, 0.84). However, when stratified by race/ethnicity, associations were statistically significant in NHW survivors only. Compared with low intake, higher cruciferous vegetable intake was associated with lower odds of experiencing menopausal symptoms (≥ 70.8 vs. < 33.0 g/day, OR 0.50, 95% CI 0.25, 0.97) in the overall population.

Conclusions

In this population of breast cancer survivors, higher soy and cruciferous vegetable intake was associated with less treatment-related menopausal symptoms and fatigue.

This is a preview of subscription content, access via your institution.

Change history

  • 11 January 2018

    In the original publication, the values provided for the isoflavone and glucosinolate intake variables were incorrectly labeled in Table 1. The correct values of 6.3 mg/day for isoflavone intake, and 20.4 mg/day and 50.1 mg/day for glucosinolate intake are provided in this erratum.

References

  1. 1.

    Ganz PA (2006) Monitoring the physical health of cancer survivors: a survivorship-focused medical history. J Clin Oncol 24(32):5105–5111. https://doi.org/10.1200/JCO.2006.06.0541

    Article  PubMed  Google Scholar 

  2. 2.

    U.S. National Cancer Institute (2017) NCI Dictionary of Cancer Terms. https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=390292. Accessed 17 Aug 2017

  3. 3.

    Cusack L, Brennan M, Baber R, Boyle F (2013) Menopausal symptoms in breast cancer survivors: management update. Br J Gen Pract 63(606):51–52. https://doi.org/10.3399/bjgp13X660977

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Harris PF, Remington PL, Trentham-Dietz A, Allen CI, Newcomb PA (2002) Prevalence and treatment of menopausal symptoms among breast cancer survivors. J Pain Symptom Manag 23(6):501–509. https://doi.org/10.1016/S0885-3924(02)00395-0

    Article  Google Scholar 

  5. 5.

    Jim HS, Phillips KM, Chait S, Faul LA, Popa MA, Lee YH, Hussin MG, Jacobsen PB, Small BJ (2012) Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol 30(29):3578–3587. https://doi.org/10.1200/JCO.2011.39.5640

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gallicchio L, Calhoun C, Helzlsouer KJ (2013) Aromatase inhibitor therapy and hair loss among breast cancer survivors. Breast Cancer Res Treat 142(2):435–443. https://doi.org/10.1007/s10549-013-2744-2

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kenyon M, Mayer DK, Owens AK (2014) Late and long-term effects of breast cancer treatment and surveillance management for the general practitioner. J Obstet Gynecol Neonatal Nurs 43(3):382–398. https://doi.org/10.1111/1552-6909.12300

    Article  PubMed  Google Scholar 

  8. 8.

    Runowicz CD, Leach CR, Henry NL, Henry KS, Mackey HT, Cowens-Alvarado RL, Cannady RS, Pratt-Chapman ML, Edge SB, Jacobs LA, Hurria A, Marks LB, LaMonte SJ, Warner E, Lyman GH, Ganz PA (2016) American Cancer Society/American Society of clinical oncology breast cancer survivorship care guideline. J Clin Oncol 34(6):611–635. https://doi.org/10.1200/JCO.2015.64.3809

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Syrowatka A, Motulsky A, Kurteva S, Hanley JA, Dixon WG, Meguerditchian AN, Tamblyn R (2017) Predictors of distress in female breast cancer survivors: a systematic review. Breast Cancer Res Treat. https://doi.org/10.1007/s10549-017-4290-9

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wen KY, Fang CY, Ma GX (2014) Breast cancer experience and survivorship among Asian Americans: a systematic review. J Cancer Surviv 8(1):94–107. https://doi.org/10.1007/s11764-013-0320-8

    Article  PubMed  Google Scholar 

  11. 11.

    Messina MJ, Loprinzi CL (2001) Soy for breast cancer survivors: a critical review of the literature. J Nutr 131(11):3095S–3108S

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Setchell KDR, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129(3):758

    Article  Google Scholar 

  13. 13.

    Jacobs A, Wegewitz U, Sommerfeld C, Grossklaus R, Lampen A (2009) Efficacy of isoflavones in relieving vasomotor menopausal symptoms - a systematic review. Mol Nutr Food Res 53(9):1084–1097. https://doi.org/10.1002/mnfr.200800552

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kronenberg F, Fugh-Berman A (2002) Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann Intern Med 137(10):805–813

    Article  PubMed  Google Scholar 

  15. 15.

    Messina M, Hughes C (2003) Efficacy of soyfoods and soybean isoflavone supplements for alleviating menopausal symptoms is positively related to initial hot flush frequency. J Med Food 6(1):1–11. https://doi.org/10.1089/109662003765184697

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Dorjgochoo T, Gu K, Zheng Y, Kallianpur A, Chen Z, Zheng W, Lu W, Shu XO (2011) Soy intake in association with menopausal symptoms during the first 6 and 36 months after breast cancer diagnosis. Breast Cancer Res Treat 130(3):879–889. https://doi.org/10.1007/s10549-010-1096-4

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Gold EB, Flatt SW, Pierce JP, Bardwell WA, Hajek RA, Newman VA, Rock CL, Stefanick ML (2006) Dietary factors and vasomotor symptoms in breast cancer survivors: the WHEL study. Menopause 13(3):423–433. https://doi.org/10.1097/01.gme.0000185754.85328.44

    Article  PubMed  Google Scholar 

  18. 18.

    MacGregor CA, Canney PA, Patterson G, McDonald R, Paul J (2005) A randomised double-blind controlled trial of oral soy supplements versus placebo for treatment of menopausal symptoms in patients with early breast cancer. Eur J Cancer 41(5):708–714. https://doi.org/10.1016/j.ejca.2005.01.005

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Nikander E, Kilkkinen A, Metsa-Heikkila M, Adlercreutz H, Pietinen P, Tiitinen A, Ylikorkala O (2003) A randomized placebo-controlled crossover trial with phytoestrogens in treatment of menopause in breast cancer patients. Obstet Gynecol 101(6):1213–1220

    CAS  PubMed  Google Scholar 

  20. 20.

    Van Patten CL, Olivotto IA, Chambers GK, Gelmon KA, Hislop TG, Templeton E, Wattie A, Prior JC (2002) Effect of soy phytoestrogens on hot flashes in postmenopausal women with breast cancer: a randomized, controlled clinical trial. J Clin Oncol 20(6):1449–1455. https://doi.org/10.1200/JCO.2002.20.6.1449

    Article  PubMed  Google Scholar 

  21. 21.

    Keck AS, Finley JW (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Ther 3:5–12

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Fuentes F, Paredes-Gonzalez X, Kong AT (2015) Dietary glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: anti-oxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1(3):179–196. https://doi.org/10.1007/s40495-015-0017-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55(3):224–236. https://doi.org/10.1016/j.phrs.2007.01.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Navarro SL, Schwarz Y, Song X, Wang CY, Chen C, Trudo SP, Kristal AR, Kratz M, Eaton DL, Lampe JW (2014) Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr 144(11):1850–1857. https://doi.org/10.3945/jn.114.197434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Steinkellner H, Rabot S, Freywald C, Nobis E, Scharf G, Chabicovsky M, Knasmuller S, Kassie F (2001) Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res 480–481:285–297

    Article  PubMed  Google Scholar 

  26. 26.

    Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227(2):115–124. https://doi.org/10.1016/j.canlet.2004.10.007

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zhang Y (2012) The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 33(1):2–9. https://doi.org/10.1093/carcin/bgr255

    Article  PubMed  Google Scholar 

  28. 28.

    Portenoy RK, thaler HT, Kornblith AB, Lepore JM, Friedlander-Klar H, Kiyasu E, Sobel K, Coyle N, Kemeny N, Norton L (1994) The Memorial Symptom Assessment Scale: an instrument for the evaluation of symptom prevalence, characteristics and distress. Eur J Cancer 30A:1326–1336

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cella D, Land SR, Chang C-H, Day R, Costantino JP, Wolmark N, Ganz PA (2007) Symptom measurement in the Breast Cancer Prevention Trial (BCPT) (P-1): psychometric properties of a new measure of symptoms for midlife women. Breast Cancer Res Treat 109(3):515–526. https://doi.org/10.1007/s10549-007-9682-9

    Article  PubMed  Google Scholar 

  30. 30.

    Lam WWT, Law CC, Fu YT, Wong KH, Chang VT, Fielding R (2008) New insights in symptom assessment: the Chinese versions of the Memorial Symptom Assessment Scale Short Form (MSAS-SF) and the condensed MSAS (CMSAS). J Pain Symptom Manag 36(6):584–595. https://doi.org/10.1016/j.jpainsymman.2007.12.008

    Article  Google Scholar 

  31. 31.

    Epplein M, Shu XO, Xiang YB, Chow WH, Yang G, Li HL, Ji BT, Cai H, Gao YT, Zheng W (2010) Fruit and vegetable consumption and risk of distal gastric cancer in the Shanghai women’s and men’s health studies. Am J Epidemiol 172(4):397–406. https://doi.org/10.1093/aje/kwq144

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Fred Hutchinson Cancer Research Center (2010) Food frequency questionnaires. Fred Hutchinson Cancer Research Center. http://sharedresources.fhcrc.org/services/food-frequency-questionnaires-ffq. Accessed 2 May 2012

  33. 33.

    Hakim IA, Hartz V, Harris RB, Balentine D, Weisgerber UM, Graver E, Whitacre R, Alberts D (2001) Reproducibility and relative validity of a questionnaire to assess intake of black tea polyphenols in epidemiological studies. Cancer Epidemiol Biomark Prev 10(6):667–678

    CAS  Google Scholar 

  34. 34.

    Thomson CA, Newton TR, Graver EJ, Jackson KA, Reid PM, Hartz VL, Cussler EC, Hakim IA (2007) Cruciferous vegetable intake questionnaire improves cruciferous vegetable intake estimates. J Am Diet Assoc 107(4):631–643. https://doi.org/10.1016/j.jada.2007.01.016

    Article  PubMed  Google Scholar 

  35. 35.

    Martinez ME, Marshall JR, Graver E, Whitacre RC, Woolf K, Ritenbaugh C, Alberts DS (1999) Reliability and validity of a self-administered food frequency questionnaire in a chemoprevention trial of adenoma recurrence. Cancer Epidemiol Biomark Prev 8(10):941–946

    CAS  Google Scholar 

  36. 36.

    Thomson CA, Giuliano A, Rock CL, Ritenbaugh CK, Flatt SW, Faerber S, Newman V, Caan B, Graver E, Hartz V, Whitacre R, Parker F, Pierce JP, Marshall JR (2003) Measuring dietary change in a diet intervention trial: comparing food frequency questionnaire and dietary recalls. Am J Epidemiol 157(8):754–762

    Article  PubMed  Google Scholar 

  37. 37.

    Bhagwat S HD, Holden JM, (2008) USDA Database for the Isoflavone Content of Selected Foods, Release 2.0. U.S. department of agriculture. https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-database-for-the-isoflavone-content-of-selected-foods-release-20/. Accessed 15 August 2016

  38. 38.

    McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90(03):687–697. https://doi.org/10.1079/BJN2003917

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exercise 35:1381–1395

    Article  Google Scholar 

  40. 40.

    Macfarlane DJ, Lee CCY, Ho EYK, Chan KL, Chan DTS (2007) Reliability and validity of the Chinese version of IPAQ (short, last 7 days). J Sci Med Sport 10(1):45–51. https://doi.org/10.1016/j.jsams.2006.05.003

    Article  PubMed  Google Scholar 

  41. 41.

    Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ) (2005). https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0aGVpcGFxfGd4OjE0NDgxMDk3NDU1YWRlZTM. Accessed 5 Oct 2015

  42. 42.

    Thomson C, Rock C, Thompson P, Caan B, Cussler E, Flatt S, Pierce J (2011) Vegetable intake is associated with reduced breast cancer recurrence in tamoxifen users: a secondary analysis from the women’s healthy eating and living study. Breast Cancer Res Treat 125(2):519–527. https://doi.org/10.1007/s10549-010-1014-9

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Comhaire FH, Depypere HT (2015) Hormones, herbal preparations and nutriceuticals for a better life after the menopause: part II. Climacteric 18(3):364–371. https://doi.org/10.3109/13697137.2014.985646

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Comhaire FH, Depypere HT (2015) Hormones, herbal preparations and nutriceuticals for a better life after the menopause: part I. Climacteric 18(3):358–363. https://doi.org/10.3109/13697137.2014.985645

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Medina D (2005) Mammary developmental fate and breast cancer risk. Endocr-Relat Cancer 12(3):483–495. https://doi.org/10.1677/erc.1.00804

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Fritz H, Seely D, Flower G, Skidmore B, Fernandes R, Vadeboncoeur S, Kennedy D, Cooley K, Wong R, Sagar S, Sabri E, Fergusson D (2013) Soy, red clover, and isoflavones and breast cancer: a systematic review. PLoS ONE 8(11):e81968. https://doi.org/10.1371/journal.pone.0081968

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nechuta SJ, Caan BJ, Chen WY, Lu W, Chen Z, Kwan ML, Flatt SW, Zheng Y, Zheng W, Pierce JP, Shu XO (2012) Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am J Clin Nutr 96(1):123–132. https://doi.org/10.3945/ajcn.112.035972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kang X, Zhang Q, Wang S, Huang X, Jin S (2010) Effect of soy isoflavones on breast cancer recurrence and death for patients receiving adjuvant endocrine therapy. Can Med Association J 182(17):1857–1862. https://doi.org/10.1503/cmaj.091298

    Article  Google Scholar 

  49. 49.

    Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W, Lu W (2009) Soy foods intake and breast cancer survival. JAMA 302:2437–2443

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Fink BN, Steck SE, Wolff MS, Britton JA, Kabat GC, Gaudet MM, Abrahamson PE, Bell P, Schroeder JC, Teitelbaum SL, Neugut AI, Gammon MD (2007) Dietary flavonoid intake and breast cancer survival among women on Long Island. Cancer Epidemiol Biomark Prev 16(11):2285–2292. https://doi.org/10.1158/1055-9965.epi-07-0245

    CAS  Article  Google Scholar 

  51. 51.

    Zhang YF, Kang HB, Zhang RM (2012) Positive effects of soy isoflavone food on survival of breast cancer patients in China. Asian Pac J Cancer Prev 13:479–482

    Article  PubMed  Google Scholar 

  52. 52.

    Freedman RR (2014) Menopausal hot flashes: mechanisms, endocrinology, treatment. J Steroid Biochem Mol Biol 142:115–120. https://doi.org/10.1016/j.jsbmb.2013.08.010

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Liu ZM, Ho SC, Woo J, Chen YM, Wong C (2014) Randomized controlled trial of whole soy and isoflavone daidzein on menopausal symptoms in equol-producing Chinese postmenopausal women. Menopause 21(6):653–660. https://doi.org/10.1097/GME.0000000000000102

    Article  PubMed  Google Scholar 

  54. 54.

    Ye YB, Wang ZL, Zhuo SY, Lu W, Liao HF, Verbruggen M, Fang S, Mai HY, Chen YM, Su YX (2012) Soy germ isoflavones improve menopausal symptoms but have no effect on blood lipids in early postmenopausal Chinese women: a randomized placebo-controlled trial. Menopause 19(7):791–798. https://doi.org/10.1097/gme.0b013e31823dbeda

    Article  PubMed  Google Scholar 

  55. 55.

    Franco OH, Chowdhury R, Troup J et al (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563. https://doi.org/10.1001/jama.2016.8012

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Quella SK, Loprinzi CL, Barton DL, Knost JA, Sloan JA, LaVasseur BI, Swan D, Krupp KR, Miller KD, Novotny PJ (2000) evaluation of soy phytoestrogens for the treatment of hot flashes in breast cancer survivors: a North Central Cancer Treatment Group trial. J Clin Oncol 18(5):1068

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Adlercreutz H, Fotsis T, Bannwart C, Wahala K, Makela T, Brunow G, Hase T (1986) Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets. J Steroid Biochem 25(5B):791–797

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Ishiwata N, Melby MK, Mizuno S, Watanabe S (2009) New equol supplement for relieving menopausal symptoms: randomized, placebo-controlled trial of Japanese women. Menopause 16(1):141–148. https://doi.org/10.1097/gme.0b013e31818379fa

    Article  PubMed  Google Scholar 

  59. 59.

    Zhao J, Harada N, Kurihara H, Nakagata N, Okajima K (2011) Dietary isoflavone increases insulin-like growth factor-I production, thereby promoting hair growth in mice. J Nutr Biochem 22(3):227–233. https://doi.org/10.1016/j.jnutbio.2010.01.008

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Ding J, Xi Y-D, Zhang D-D, Zhao X, Liu J-M, Li C-Q, Han J, Xiao R (2013) Soybean isoflavone ameliorates β-amyloid 1-42-induced learning and memory deficit in rats by protecting synaptic structure and function. Synapse 67(12):856–864. https://doi.org/10.1002/syn.21692

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Yuan-Di X, Xiao-Ying L, Juan D, Huan-Ling Y, Wei-Wei M, Lin-Hong Y, Jian W, Rong X (2013) Soy isoflavone alleviates Aβ1-42-induced impairment of learning and memory ability through the regulation of RAGE/LRP-1 in neuronal and vascular tissue. Curr Neurovascular Res 10(2):144–156. https://doi.org/10.2174/1567202611310020007

    Article  Google Scholar 

  62. 62.

    Cheng PF, Chen JJ, Zhou XY, Ren YF, Huang W, Zhou JJ, Xie P (2015) Do soy isoflavones improve cognitive function in postmenopausal women? a meta-analysis. Menopause 22:198–206

    Article  PubMed  Google Scholar 

  63. 63.

    Herber-Gast GC, Mishra GD (2013) Fruit, Mediterranean-style, and high-fat and -sugar diets are associated with the risk of night sweats and hot flushes in midlife: results from a prospective cohort study. Am J Clin Nutr 97(5):1092–1099. https://doi.org/10.3945/ajcn.112.049965

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Lance Armstrong Foundation Young Investigator Award and a National Cancer Institute R21 Grant# CA139408. The collection of cancer incidence data used in this study was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885; the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program under contract HHSN261201000140C awarded to the Cancer Prevention Institute of California, contract HHSN261201000035C awarded to the University of Southern California, and contract HHSN261201000034C awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement # U58DP003862-01 awarded to the California Department of Public Health. The ideas and opinions expressed herein are those of the author(s). Endorsement by the State of California Department of Public Health, the National Cancer Institute, and the Centers for Disease Control and Prevention or their Contractors and Subcontractors is not intended nor should be inferred.

Disclaimers

The project described was supported by the Award Number R21CA139408 from the National Cancer Institute and Lance Armstrong Foundation Young Investigator Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies including National Cancer Institute or the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Judy Huei-yu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10549-017-4634-5.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nomura, S.J.O., Hwang, YT., Gomez, S.L. et al. Dietary intake of soy and cruciferous vegetables and treatment-related symptoms in Chinese-American and non-Hispanic White breast cancer survivors. Breast Cancer Res Treat 168, 467–479 (2018). https://doi.org/10.1007/s10549-017-4578-9

Download citation

Keywords

  • Cruciferous vegetables
  • Soy foods
  • Breast cancer survivors
  • Endocrine therapy
  • Late treatment effects