Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008

Abstract

Background

Methylated gene markers have shown promise in predicting breast cancer outcomes and treatment response. We evaluated whether baseline and changes in tissue and serum methylation levels would predict pathological complete response (pCR) in patients with HER2-negative early breast cancer undergoing preoperative chemotherapy.

Methods

The TBCRC008 trial investigated pCR following 12 weeks of preoperative carboplatin and albumin-bound paclitaxel + vorinostat/placebo (n = 62). We measured methylation of a 10-gene panel by quantitative multiplex methylation-specific polymerase chain reaction and expressed results as cumulative methylation index (CMI). We evaluated association between CMI level [baseline, day 15 (D15), and change] and pCR using univariate and multivariable logistic regression models controlling for treatment and hormone receptor (HR) status, and performed exploratory subgroup analyses.

Results

In univariate analysis, one log unit increase in tissue CMI levels at D15 was associated with 40% lower chance of obtaining pCR (odds ratio, OR 0.60, 95% CI 0.37–0.97; p = 0.037). Subgroup analyses suggested a significant association between tissue D15 CMI levels and pCR in vorinostat-treated [OR 0.44 (0.20, 0.93), p = 0.03], but not placebo-treated patients.

Conclusion

In this study investigating the predictive roles of tissue and serum CMI levels in patients with early breast cancer for the first time, we demonstrate that high D15 tissue CMI levels may predict poor response. Larger studies and improved analytical procedures to detect methylated gene markers in early stage breast cancer are needed. TBCRC008 is registered on ClinicalTrials.gov (NCT00616967).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. 1.

    https://seer.cancer.gov/statfacts/html/breast.html. Accessed September 14 2017

  2. 2.

    Mukhtar RA, Wong JM, Esserman LJ (2015) Preventing overdiagnosis and overtreatment: just the next step in the evolution of breast cancer care. J Natl Compr Cancer Netw 13(6):737–743

    Article  Google Scholar 

  3. 3.

    Abramovitz M, Krie A, Dey N, De P, Williams C, Leyland-Jones B (2016) Identifying biomarkers to select patients with early breast cancer suitable for extended adjuvant endocrine therapy. Curr Opin Oncol 28(6):461–468

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Lee JS, Magbanua MJ, Park JW (2016) Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat 160(3):411–424

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Selli C, Dixon JM, Sims AH (2016) Accurate prediction of response to endocrine therapy in breast cancer patients: current and future biomarkers. Breast Cancer Res 18(1):118

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Day TK, Bianco-Miotto T (2013) Common gene pathways and families altered by DNA methylation in breast and prostate cancers. Endocr Relat Cancer 20(5):R215–R232

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Gyorffy B, Bottai G, Fleischer T, Munkacsy G, Budczies J, Paladini L, Borresen-Dale AL, Kristensen VN, Santarpia L (2016) Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes. Int J Cancer 138(1):87–97

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J, Speeckaert M (2012) DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res 751(2):304–325

    Article  Google Scholar 

  9. 9.

    Wittenberger T, Sleigh S, Reisel D, Zikan M, Wahl B, Alunni-Fabbroni M, Jones A, Evans I, Koch J, Paprotka T et al (2014) DNA methylation markers for early detection of women’s cancer: promise and challenges. Epigenomics 6(3):311–327

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Shim J, Humphreys GI, Venkatesan BM, Munz JM, Zou X, Sathe C, Schulten K, Kosari F, Nardulli AM, Vasmatzis G et al (2013) Detection and quantification of methylation in DNA using solid-state nanopores. Sci Rep 3:1389

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yong WS, Hsu FM, Chen PY (2016) Profiling genome-wide DNA methylation. Epigenet Chromatin 9:26

    Article  Google Scholar 

  12. 12.

    Lizardi PM, Yan Q, Wajapeyee N (2016) DNA bisulfite sequencing for single-nucleotide-resolution DNA methylation detection. Cold Spring Harb Protoc. doi:10.1101/pdb.prot094839

    Google Scholar 

  13. 13.

    Fackler MJ, McVeigh M, Mehrotra J, Blum MA, Lange J, Lapides A, Garrett E, Argani P, Sukumar S (2004) Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res 64(13):4442–4452

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Stearns V, Fackler MJ, Hafeez S, Bujanda ZL, Chatterton RT, Jacobs LK, Khouri NF, Ivancic D, Kenney K, Shehata C et al (2016) Gene methylation and cytological atypia in random fine-needle aspirates for assessment of breast cancer risk. Cancer Prev Res (Phila) 9(8):673–682

    CAS  Article  Google Scholar 

  15. 15.

    Fackler MJ, Rivers A, Teo WW, Mangat A, Taylor E, Zhang Z, Goodman S, Argani P, Nayar R, Susnik B et al (2009) Hypermethylated genes as biomarkers of cancer in women with pathologic nipple discharge. Clin Cancer Res 15(11):3802–3811

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Fackler MJ, Malone K, Zhang Z, Schilling E, Garrett-Mayer E, Swift-Scanlan T, Lange J, Nayar R, Davidson NE, Khan SA et al (2006) Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res 12(11 Pt 1):3306–3310

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Everhard S, Kaloshi G, Criniere E, Benouaich-Amiel A, Lejeune J, Marie Y, Sanson M, Kujas M, Mokhtari K, Hoang-Xuan K et al (2006) MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol 60(6):740–743

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fiegl H, Jones A, Hauser-Kronberger C, Hutarew G, Reitsamer R, Jones RL, Dowsett M, Mueller-Holzner E, Windbichler G, Daxenbichler G et al (2008) Methylated NEUROD1 promoter is a marker for chemosensitivity in breast cancer. Clin Cancer Res 14(11):3494–3502

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Dejeux E, Ronneberg JA, Solvang H, Bukholm I, Geisler S, Aas T, Gut IG, Borresen-Dale AL, Lonning PE, Kristensen VN et al (2010) DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Klajic J, Busato F, Edvardsen H, Touleimat N, Fleischer T, Bukholm I, Borresen-Dale AL, Lonning PE, Tost J, Kristensen VN (2014) DNA methylation status of key cell-cycle regulators such as CDKNA2/p16 and CCNA1 correlates with treatment response to doxorubicin and 5-fluorouracil in locally advanced breast tumors. Clin Cancer Res 20(24):6357–6366

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Fackler MJ, Lopez Bujanda Z, Umbricht C, Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C et al (2014) Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res 74(8):2160–2170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Visvanathan K, Fackler MS, Zhang Z, Lopez-Bujanda ZA, Jeter SC, Sokoll LJ, Garrett-Mayer E, Cope LM, Umbricht CB, Euhus DM et al (2017) Monitoring of serum DNA methylation as an early independent marker of response and survival in metastatic breast cancer: TBCRC 005 prospective biomarker study. J Clin Oncol 35(7):751–758

    Article  PubMed  Google Scholar 

  23. 23.

    Avraham A, Uhlmann R, Shperber A, Birnbaum M, Sandbank J, Sella A, Sukumar S, Evron E (2012) Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer 131(7):E1166–E1172

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kristiansen S, Jorgensen LM, Hansen MH, Nielsen D, Soletormos G (2015) Concordance of hypermethylated DNA and the tumor markers CA 15-3, CEA, and TPA in serum during monitoring of patients with advanced breast cancer. Biomed Res Int 2015:986024

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kristiansen S, Nielsen D, Soletormos G (2016) Detection and monitoring of hypermethylated RASSF1A in serum from patients with metastatic breast cancer. Clin Epigenet 8:35

    Article  Google Scholar 

  26. 26.

    Liu L, Sun L, Li C, Li X, Zhang Y, Yu Y, Xia W (2015) Quantitative detection of methylation of FHIT and BRCA1 promoters in the serum of ductal breast cancer patients. Biomed Mater Eng 26(Suppl 1):S2217–S2222

    CAS  PubMed  Google Scholar 

  27. 27.

    Xia B, Shan M, Wang J, Zhong Z, Geng J, He X, Vu T, Zhang D, Pang D (2017) Homeobox A11 hypermethylation indicates unfavorable prognosis in breast cancer. Oncotarget 8(6):9794–9805

    Article  PubMed  Google Scholar 

  28. 28.

    Connolly RM, Leal JP, Goetz MP, Zhang Z, Zhou XC, Jacobs LK, Mhlanga J, Joo HO, Carpenter J, Storniolo AM et al (2015) TBCRC 008: early change in 18F-FDG uptake on PET predicts response to preoperative systemic therapy in human epidermal growth factor receptor 2-negative primary operable breast cancer. J Nucl Med 56(1):31–37

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, Merino VF, Teo WW, Zhang Z, Huang P, Visvananthan K et al (2011) Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res 71(19):6195–6207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    McShane LM, Hayes DF (2012) Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol 30(34):4223–4232

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Connolly R, Stearns V (2012) Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia 17(3–4):191–204

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    de Groot JS, Moelans CB, Elias SG, Jo Fackler M, van Domselaar R, Suijkerbuijk KP, Witkamp AJ, Sukumar S, van Diest PJ, van der Wall E (2016) DNA promoter hypermethylation in nipple fluid: a potential tool for early breast cancer detection. Oncotarget 7(17):24778–24791

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kajabova V, Smolkova B, Zmetakova I, Sebova K, Krivulcik T, Bella V, Kajo K, Machalekova K, Fridrichova I (2013) RASSF1A promoter methylation levels positively correlate with estrogen receptor expression in breast cancer patients. Transl Oncol 6(3):297–304

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sebova K, Zmetakova I, Bella V, Kajo K, Stankovicova I, Kajabova V, Krivulcik T, Lasabova Z, Tomka M, Galbavy S et al (2011) RASSF1A and CDH1 hypermethylation as potential epimarkers in breast cancer. Cancer Biomark 10(1):13–26

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Suijkerbuijk KP, Pan X, van der Wall E, van Diest PJ, Vooijs M (2010) Comparison of different promoter methylation assays in breast cancer. Anal Cell Pathol (Amst) 33(3):133–141

    CAS  Article  Google Scholar 

  37. 37.

    Swift-Scanlan T, Vang R, Blackford A, Fackler MJ, Sukumar S (2011) Methylated genes in breast cancer: associations with clinical and histopathological features in a familial breast cancer cohort. Cancer Biol Ther 11(10):853–865

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Beaver JA, Jelovac D, Balukrishna S, Cochran RL, Croessmann S, Zabransky DJ, Wong HY, Valda Toro P, Cidado J, Blair BG et al (2014) Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res 20(10):2643–2650

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, Cheang M, Osin P, Nerurkar A, Kozarewa I et al (2015) Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 7(302):302ra133

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients who participated in this study: NIH grant P30 CA006973, SPORE in breast cancer (P50 CA88843), TBCRC and its founding partners (The AVON Foundation, The Breast Cancer Research Foundation and Susan G. Komen for the Cure); Abraxis Bioscience: Merck Oncology: and the Cindy Rosencrans Fund for Triple Negative Breast Cancer Research for generous funding. The authors also thank the TBCRC participating site investigators, research nurses, study coordinators, and the staff of the Breast and Ovarian Cancer Program and Avon Breast Center at Johns Hopkins.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Vered Stearns or Saraswati Sukumar.

Ethics declarations

Informed consent

Women enrolling in the study signed an informed consent approved by the Institutional Review Boards of participating institutions.

Conflicts of interest

VS has received research Grants from Merck, Celgene Corporation, Abbvie, Pfizer, Novartis, Medimmune, and Puma Biotechnology. RC has received research Grants from Novartis, Puma Biotechnology, Genentech, Merrimack, Clovis, Merck. AMS has received consulting fees from Eli Lilly and Co., and Pfizer. SS has received research Grants from AVON Foundation, Grants, licensing/royalty fees and consulting fees from Cepheid for QM-MSP and cMethDNA assays. MJF has received licensing/royalty fees and consulting fees from Cepheid. The remaining authors have no conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 156 kb)Supplementary Fig. 1: Quantitative Gene Methylation by Treatment Arm. Scatter plots indicate methylation levels in tissues from individuals treated either with vorinostat (V) or placebo (P) in addition to standard therapy. Cumulative methylation index (CMI) was calculated for tissue samples in which PCR-amplification was successful for all 10 genes in the panel. CMI = the sum of individual gene methylation within the 10 gene-panel (possible 1000 CMI units, 100% × 10 genes). Gene methylation is defined as % methylation = (# copies methylated DNA/# total copies unmethylated DNA + methylated DNA) (100). The median is shown by bar and significance was calculated using the Mann–Whitney U test

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Connolly, R.M., Fackler, M.J., Zhang, Z. et al. Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008. Breast Cancer Res Treat 167, 107–116 (2018). https://doi.org/10.1007/s10549-017-4503-2

Download citation

Keywords

  • Preoperative chemotherapy
  • Breast cancer
  • Methylation
  • cMethDNA
  • Biomarkers