Advertisement

Breast Cancer Research and Treatment

, Volume 166, Issue 1, pp 109–116 | Cite as

A functional BRCA1 coding sequence genetic variant contributes to prognosis of triple-negative breast cancer, especially after radiotherapy

  • Meng Shi
  • Fei Ma
  • Jibing Liu
  • Huaixin Xing
  • Hui Zhu
  • Jinming Yu
  • Ming Yang
Preclinical study

Abstract

Purpose

As a subtype of breast cancer, triple-negative breast cancer (TNBC) shows poor prognosis and high heterogeneity. Precise identification of TNBC subgroups relevant to clinical prognosis is crucial in the design and administration of individualized treatments. This study aimed to evaluate the prognostic value of the functional BRCA1 rs799917 genetic variant in TNBC.

Methods

Associations between the rs799917 polymorphism and progression risk were investigated after genotyping 370 TNBC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by Cox regression. 

Results

We found that the rs799917T allele was associated with a significantly increased risk of disease progression and shortened progression-free survival time (PFS) (P = 0.001 for log-rank test). Notably, TNBC patients with the rs799917 CC genotype showed about 22 months prolonged PFS compared to the TT genotype after radiotherapy (HR 4.44, 95% CI 1.98–9.93; P = 2.9 × 10−4). Additionally, in overweight patients, the mean PFS of the rs799917TT genotype was 10 months shorter than that of the CC genotype (HR 3.57, 95% CI 1.46–8.73, P = 0.005).

Conclusions

Our findings demonstrate that the functional BRCA1 genetic variant contributes to prognosis of TNBC. Our study also highlights the clinical potential of this polymorphism in the screening of high-risk TNBC patients for recurrence and the possibility of patient-tailored decisions especially during radiotherapy.

Keywords

BRCA1 miR-638 Genetic polymorphism TNBC Survival 

Notes

Funding

This study was funded by National Natural Science Foundation of China (31671300); the National High-Tech Research and Development Program of China (2015AA020950); Taishan Scholars Program of Shandong Province (tsqn20161060).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10549_2017_4395_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. 1.
    Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER, Wilson RK, Ally A, Balasundaram M, Butterfield YS, Carlsen R, Carter C, Chu A, Chuah E, Chun HJ, Coope RJ, Dhalla N, Guin R, Hirst C, Hirst M, Holt RA, Lee D, Li HI, Mayo M, Moore RA, Mungall AJ, Pleasance E, Robertson A, Schein JE, Shafiei A, Sipahimalani P, Slobodan JR, Stoll D, Tam A, Thiessen N, Varhol RJ, Wye N, Zeng T, Zhao Y, Birol I, Jones SJ, Marra MA, Cherniack AD, Saksena G, Onofrio RC, Pho NH, Carter SL, Schumacher SE, Tabak B, Hernandez B, Gentry J, Nguyen H, Crenshaw A, Ardlie K, Beroukhim R, Winckler W, Getz G, Gabriel SB, Meyerson M, Chin L, Park PJ, Kucherlapati R, Hoadley KA, Auman J, Fan C, Turman YJ, Shi Y, Li L, Topal MD, He X, Chao HH, Prat A, Silva GO, Iglesia MD, Zhao W, Usary J, Berg JS, Adams M, Booker J, Wu J, Gulabani A, Bodenheimer T, Hoyle AP, Simons JV, Soloway MG, Mose LE, Jefferys SR, Balu S, Parker JS, Hayes D, Perou CM, Malik S, Mahurkar S, Shen H, Weisenberger DJ, Triche TJ et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRefGoogle Scholar
  2. 2.
    Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, Thompson KM, Uribe-Figueroa L, Baselga J, Beroukhim R, Polyak K, Sgroi DC, Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399PubMedGoogle Scholar
  4. 4.
    Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948CrossRefPubMedGoogle Scholar
  6. 6.
    Malorni L, Shetty PB, De Angelis C, Hilsenbeck S, Rimawi MF, Elledge R, Osborne CK, De Placido S, Arpino G (2012) Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Res Treat 136:795–804CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Venkitaraman AR (2009) Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol 4:461–487CrossRefPubMedGoogle Scholar
  8. 8.
    Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN, Arun BK (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26:4282–4288CrossRefPubMedGoogle Scholar
  9. 9.
    Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkila P, Heikkinen T, Nevanlinna H, Akslen LA, Begin LR, Foulkes WD, Couch FJ, Wang X, Cafourek V, Olson JE, Baglietto L, Giles GG, Severi G, McLean CA, Southey MC, Rakha E, Green AR, Ellis IO, Sherman ME, Lissowska J, Anderson WF, Cox A, Cross SS, Reed MW, Provenzano E, Dawson SJ, Dunning AM, Humphreys M, Easton DF, Garcia-Closas M, Caldas C, Pharoah PD, Huntsman D (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dever SM, White ER, Hartman MC, Valerie K (2012) BRCA1-directed, enhanced and aberrant homologous recombination: mechanism and potential treatment strategies. Cell Cycle 11:687–694CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Roy R, Chun J, Powell SN (2011) BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 12:68–78CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271CrossRefPubMedGoogle Scholar
  13. 13.
    Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4:814–819CrossRefPubMedGoogle Scholar
  14. 14.
    Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, Pasini B, Radice P, Manoukian S, Eccles DM, Tang N, Olah E, Anton-Culver H, Warner E, Lubinski J, Gronwald J, Gorski B, Tulinius H, Thorlacius S, Eerola H, Nevanlinna H, Syrjakoski K, Kallioniemi OP, Thompson D, Evans C, Peto J, Lalloo F, Evans DG, Easton DF (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72:1117–1130CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, Trudel M, Akslen LA (2003) Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95:1482–1485CrossRefPubMedGoogle Scholar
  16. 16.
    Matros E, Wang ZC, Lodeiro G, Miron A, Iglehart JD, Richardson AL (2005) BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles. Breast Cancer Res Treat 91:179–186CrossRefPubMedGoogle Scholar
  17. 17.
    Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853CrossRefPubMedGoogle Scholar
  18. 18.
    Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA (2010) Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 70:2789–2798CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang X, Wei J, Zhou L, Zhou C, Shi J, Yuan Q, Yang M, Lin D (2013) A functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma. Carcinogenesis 34:2309–2313CrossRefPubMedGoogle Scholar
  20. 20.
    Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W (2012) Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 125:382–391CrossRefPubMedGoogle Scholar
  21. 21.
    Tay Y, Tan SM, Karreth FA, Lieberman J, Pandolfi PP (2014) Characterization of dual PTEN and p53-targeting microRNAs identifies microRNA-638/Dnm2 as a two-hit oncogenic locus. Cell Rep 8:714–722CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bhattacharya A, Schmitz U, Raatz Y, Schonherr M, Kottek T, Schauer M, Franz S, Saalbach A, Anderegg U, Wolkenhauer O, Schadendorf D, Simon JC, Magin T, Vera J, Kunz M (2015) miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget 6:2966–2980CrossRefPubMedGoogle Scholar
  23. 23.
    Ozata DM, Caramuta S, Velazquez-Fernandez D, Akcakaya P, Xie H, Hoog A, Zedenius J, Backdahl M, Larsson C, Lui WO (2011) The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr Relat Cancer 18:643–655CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, Wang E (2010) MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 16:430–441CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M (2017) MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett 390:126–136CrossRefPubMedGoogle Scholar
  26. 26.
    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334CrossRefPubMedGoogle Scholar
  27. 27.
    Krammer J, Pinker-Domenig K, Robson ME, Gonen M, Bernard-Davila B, Morris EA, Mangino DA, Jochelson MS (2017) Breast cancer detection and tumor characteristics in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 163:565–571CrossRefPubMedGoogle Scholar
  28. 28.
    Valencia OM, Samuel SE, Viscusi RK, Riall TS, Neumayer LA, Aziz H (2017) The role of genetic testing in patients with breast cancer: a review. JAMA Surg 152:589–594CrossRefPubMedGoogle Scholar
  29. 29.
    Park B, Sohn JY, Yoon KA, Lee KS, Cho EH, Lim MC, Yang MJ, Park SJ, Lee MH, Lee SY, Chang YJ, Lee DO, Kong SY, Lee ES (2017) Characteristics of BRCA1/2 mutations carriers including large genomic rearrangements in high risk breast cancer patients. Breast Cancer Res Treat 163:139–150CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11:138–148CrossRefPubMedGoogle Scholar
  31. 31.
    Paul A, Paul S (2014) The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front Biosci (Landmark Ed) 19:605–618CrossRefGoogle Scholar
  32. 32.
    Savage KI, Harkin DP (2015) BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J 282:630–646CrossRefPubMedGoogle Scholar
  33. 33.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang J, Powell SN (2005) The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 3:531–539CrossRefPubMedGoogle Scholar
  35. 35.
    Moreau K, Dizin E, Ray H, Luquain C, Lefai E, Foufelle F, Billaud M, Lenoir GM, Venezia ND (2006) BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase. J Biol Chem 281:3172–3181CrossRefPubMedGoogle Scholar
  36. 36.
    Magnard C, Bachelier R, Vincent A, Jaquinod M, Kieffer S, Lenoir GM, Venezia ND (2002) BRCA1 interacts with acetyl-CoA carboxylase through its tandem of BRCT domains. Oncogene 21:6729–6739CrossRefPubMedGoogle Scholar
  37. 37.
    Brunet J, Vazquez-Martin A, Colomer R, Grana-Suarez B, Martin-Castillo B, Menendez JA (2008) BRCA1 and acetyl-CoA carboxylase: the metabolic syndrome of breast cancer. Mol Carcinog 47:157–163CrossRefPubMedGoogle Scholar
  38. 38.
    Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL, Gu K, Fair AM, Cai Q, Lu W, Shu XO (2009) Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41:324–328CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Long J, Cai Q, Shu XO, Qu S, Li C, Zheng Y, Gu K, Wang W, Xiang YB, Cheng J, Chen K, Zhang L, Zheng H, Shen CY, Huang CS, Hou MF, Shen H, Hu Z, Wang F, Deming SL, Kelley MC, Shrubsole MJ, Khoo US, Chan KY, Chan SY, Haiman CA, Henderson BE, Le Marchand L, Iwasaki M, Kasuga Y, Tsugane S, Matsuo K, Tajima K, Iwata H, Huang B, Shi J, Li G, Wen W, Gao YT, Lu W, Zheng W (2010) Identification of a functional genetic variant at 16q12.1 for breast cancer risk: results from the Asia Breast Cancer Consortium. PLoS Genet 6:e1001002CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Long J, Cai Q, Sung H, Shi J, Zhang B, Choi JY, Wen W, Delahanty RJ, Lu W, Gao YT, Shen H, Park SK, Chen K, Shen CY, Ren Z, Haiman CA, Matsuo K, Kim MK, Khoo US, Iwasaki M, Zheng Y, Xiang YB, Gu K, Rothman N, Wang W, Hu Z, Liu Y, Yoo KY, Noh DY, Han BG, Lee MH, Zheng H, Zhang L, Wu PE, Shieh YL, Chan SY, Wang S, Xie X, Kim SW, Henderson BE, Le Marchand L, Ito H, Kasuga Y, Ahn SH, Kang HS, Chan KY, Iwata H, Tsugane S, Li C, Shu XO, Kang DH, Zheng W (2012) Genome-wide association study in east Asians identifies novel susceptibility loci for breast cancer. PLoS Genet 8:e1002532CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research CenterShandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinanChina
  2. 2.College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
  3. 3.Department of Medical OncologyCancer Hospital, Chinese Academy of Medical SciencesBeijingChina
  4. 4.Department of Radiation OncologyShandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical SciencesJinanChina

Personalised recommendations