Breast Cancer Research and Treatment

, Volume 165, Issue 3, pp 699–707 | Cite as

The effects of physical activity and fatigue on cognitive performance in breast cancer survivors

  • Diane K. EhlersEmail author
  • Susan Aguiñaga
  • Josh Cosman
  • Joan Severson
  • Arthur F. Kramer
  • Edward McAuley



Research suggests that physical activity may be a promising treatment for cancer-related cognitive impairment; however, evidence is limited by small samples and self-report measures and little is known about the underlying mechanisms. The purpose of this study was to examine the effects of physical activity on cognitive function in a national sample of breast cancer survivors (BCSs) using objective measures. We hypothesized that physical activity’s effects on cognition would be indirect through survivors’ self-reported fatigue.


Participants (N = 299; M = 57.51 ± 9.54 years) included BCSs with access to an iPad. Participants wore an accelerometer for seven consecutive days to measure their average daily minutes of moderate-to-vigorous physical activity (MVPA) and completed a battery of questionnaires and neuropsychological tests via an iPad application to measure fatigue and cognitive function. Cognitive function was modeled as two latent factors—executive function and working memory—comprising performance across seven cognitive tasks. A structural equation modeling framework was used to test the hypotheses.


MVPA was associated with less fatigue (γ = 0.19), which, in turn, was associated with faster times on executive function tasks (γ = −0.18) and greater accuracy on working memory tasks (γ = 0.16). The indirect paths from MVPA to cognitive performance were also significant (executive function: β = −0.03, memory: β = 0.03).


Findings suggest that MVPA may be associated with greater executive function and working memory in BCSs. Further, this effect may be partially indirect through cancer-related symptoms (e.g., fatigue). Results emphasize the need for additional scientific investigation in the context of prospective and efficacy trials.


Cancer-related cognitive impairment Physical activity Fatigue Breast cancer 



The authors would like to acknowledge Allen Best and the Team at Digital Artefacts for their development of the iPad application used for this study.

Compliance with ethical standards

Conflicts of interest

DKE is supported by an American Cancer Society Postdoctoral Fellowship (PF-16-021-01-CPPB).

Ethical approval

This study was approved by and carried out in accordance with the recommendations of the Institutional Review Board at the University of Illinois at Urbana-Champaign with signed informed consent from all participants. The study is registered with United States National Institutes of Health (ID NCT02523677).


  1. 1.
    Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12(7):703–708. doi: 10.1016/S1470-2045(10)70294-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Runowicz CD, Leach CR, Henry NL et al (2016) American Cancer Society/American Society of Clinical Oncology breast cancer survivorship care guideline. CA Cancer J Clin 66(1):43–73. doi: 10.3322/caac.21319 CrossRefPubMedGoogle Scholar
  3. 3.
    Argyriou AA, Assimakopoulos K, Iconomou G, Giannakopoulou F, Kalofonos HP (2011) Either called “chemobrain” or “chemofog,” the long-term chemotherapy-induced cognitive decline in cancer survivors is real. J Pain Symptom Manag 41(1):126–139. doi: 10.1016/j.jpainsymman.2010.04.021 CrossRefGoogle Scholar
  4. 4.
    Janelsins MC, Kesler SR, Ahles TA, Morrow GR (2014) Prevalence, mechanisms, and management of cancer-related cognitive impairment. Int Rev Psychiatry 26(1):102–113. doi: 10.3109/09540261.2013.864260 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ahles TA, Root JC, Ryan EL (2012) Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol 30(30):3675–3686. doi: 10.1200/JCO.2012.43.0116 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Myers JS (2011) Chemotherapy-related cognitive impairment: the breast cancer experience. Oncol Nurs Forum 39(1):E31–E40. doi: 10.1188/12.ONF.E31-E40 CrossRefGoogle Scholar
  7. 7.
    Von Ah D, Habermann B, Carpenter JS, Schneider BL (2013) Impact of perceived cognitive impairment in breast cancer survivors. Eur J Oncol Nurs 17(2):236–241. doi: 10.1016/j.ejon.2012.06.002 CrossRefGoogle Scholar
  8. 8.
    Mackenzie M, Zuniga K, McAuley E (2006) Cognitive impairment in breast cancer: the protective role of physical activity, cardiorespiratory fitness, and exercise training. In: McMorris T (ed) Exercise-cognition interaction: neuroscience perspectives. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA (2004) The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 100(11):2292–2299. doi: 10.1002/cncr.20272 CrossRefPubMedGoogle Scholar
  10. 10.
    Maccormick RE (2006) Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med Hypotheses 67(2):212–215. doi: 10.1016/j.mehy.2006.01.045 CrossRefPubMedGoogle Scholar
  11. 11.
    Merriman JD, Von Ah D, Miaskowski C, Aouizerat BE (2013) Proposed mechanisms for cancer- and treatment-related cognitive changes. Semin Oncol Nurs 29(4):260–269. doi: 10.1016/j.soncn.2013.08.006 CrossRefPubMedGoogle Scholar
  12. 12.
    Bherer L, Erickson KI, Liu-Ambrose T (2013) A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res. doi: 10.1155/2013/657508 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Colcombe SJ, Erickson KI, Scalf PE et al (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A 61(11):1166–1170CrossRefGoogle Scholar
  14. 14.
    Erickson KI, Voss MW, Prakash RS et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022. doi: 10.1073/pnas.1015950108 CrossRefPubMedGoogle Scholar
  15. 15.
    Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9(1):58–65. doi: 10.1038/nrn2298 CrossRefPubMedGoogle Scholar
  16. 16.
    Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B, Northey JM (2017) Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. (3):1–9. doi: 10.1136/bjsports-2016-096587
  17. 17.
    Chaddock-Heyman L, Mackenzie MJ, Zuniga K et al (2015) Higher cardiorespiratory fitness levels are associated with greater hippocampal volume in breast cancer survivors. Front Hum Neurosci 9(August):465. doi: 10.3389/fnhum.2015.00465 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cooke GE, Wetter NC, Banducci SE et al (2016) Moderate physical activity mediates the association between white matter lesion volume and memory recall in breast cancer survivors. PLoS ONE 11(2):e0149552. doi: 10.1371/journal.pone.0149552 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mackenzie MJ, Zuniga KE, Raine LB et al (2016) Associations between physical fitness indices and working memory in breast cancer survivors and age-matched controls. J Womens Health (Larchmt) 25(1):99–108. doi: 10.1089/jwh.2015.5246 CrossRefGoogle Scholar
  20. 20.
    Sprod LK, Mohile SG, Demark-Wahnefried W et al (2012) Exercise and cancer treatment symptoms in 408 newly diagnosed older cancer patients. J Geriatr Oncol 3(2):90–97. doi: 10.1016/j.jgo.2012.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zimmer P, Baumann FT, Oberste M et al (2016) Effects of exercise interventions and physical activity behavior on cancer related cognitive impairments: a systematic review. Biomed Res Int. doi: 10.1155/2016/1820954 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hartman SJ, Marinac CR, Natarajan L, Patterson RE (2014) Lifestyle factors associated with cognitive functioning in breast cancer survivors. Psychooncology. doi: 10.1002/pon.3626 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Marinac CR, Godbole S, Kerr J, Natarajan L, Patterson RE, Hartman SJ (2015) Objectively measured physical activity and cognitive functioning in breast cancer survivors. J Cancer Surviv 9(2):230–238. doi: 10.1007/s11764-014-0404-0 CrossRefPubMedGoogle Scholar
  24. 24.
    Bower JE (2014) Cancer-related fatigue—mechanisms, risk factors, and treatments. Nat Rev Clin Oncol 11(10):597–609. doi: 10.1038/nrclinonc.2014.127 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mishra SI, Scherer RW, Snyder C, Geigle PM, Berlanstein DR, Topaloglu O (2015) Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev (8).
  26. 26.
    Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7(3):192–201. doi: 10.1038/nrc2073 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Janelsins MC, Kohli S, Mohile SG, Usuki K, Ahles TA, Morrow GR (2011) An update on cancer- and chemotherapy-related cognitive dysfunction: current status. Semin Oncol 38(3):431–438. doi: 10.1053/j.seminoncol.2011.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sartori AC, Vance DE, Slater LZ, Crowe M (2012) The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J Neurosci Nurs 44(4):206–217. doi: 10.1097/JNN.0b013e3182527690 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Asher A, Myers JS (2015) The effect of cancer treatment on cognitive function. Clin Adv Hematol Oncol 13(7):441–450PubMedGoogle Scholar
  30. 30.
    Phillips S, McAuley E (2015) Associations between self-reported post-diagnosis physical activity changes, body weight changes, and psychosocial well-being in breast cancer survivors. Support Care Cancer 23:159–167. doi: 10.1007/s00520-014-2346-5 CrossRefPubMedGoogle Scholar
  31. 31.
    Goodman RA, Posner SF, Huang ES, Parekh AK, Koh HK (2013) Defining and measuring chronic conditions: imperatives for research, policy, program, and practice. 10. doi: 10.5888/pcd10.120239
  32. 32.
    Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M (2008) Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 40(1):181–188. doi: 10.1249/mss.0b013e31815a51b3 CrossRefPubMedGoogle Scholar
  33. 33.
    Freedson P, Melanson E, Sirard J (1998) Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sport Exerc 30:777–781CrossRefGoogle Scholar
  34. 34.
    Yellen SB, Cella DF, Webster K, Blendowski C, Kaplan E (1997) Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manag 13(2):63–74. doi: 10.1016/S0885-3924(96)00274-6 CrossRefGoogle Scholar
  35. 35.
    Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149. doi: 10.3758/BF03203267 CrossRefGoogle Scholar
  36. 36.
    Monsell S (2003) Task switching. Trends Cogn Sci 7(3):134–140. doi: 10.1016/S1364-6613(03)00028-7 CrossRefPubMedGoogle Scholar
  37. 37.
    Battery AIT (1994) Manual of directions and scoring. War Department, Adjutant General’s Office, Washington, DCGoogle Scholar
  38. 38.
    Muthén B, Kaplan D, Hollis M (1987) On structural equation modeling with data that are not missing completely at random. Psychometrika 52(3):431–462. doi: 10.1007/BF02294365 CrossRefGoogle Scholar
  39. 39.
    Larsen R (2011) Missing data imputation versus full information maximum likelihood with second-level dependencies. Struct Equ Model Multidiscip J 18(4):649–662. doi: 10.1080/10705511.2011.607721 CrossRefGoogle Scholar
  40. 40.
    Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model Multidiscip J 6(1):1–55. doi: 10.1080/10705519909540118 CrossRefGoogle Scholar
  41. 41.
    Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci J Am Psychol Soc 14(2):125–130CrossRefGoogle Scholar
  42. 42.
    Crowgey T, Peters KB, Hornsby WE et al (2013) Relationship between exercise behavior, cardiorespiratory fitness, and cognitive function in early breast cancer patients treated with doxorubicin-containing chemotherapy: a pilot study 1. Appl Physiol Nutr Metab 39(December):724–729PubMedPubMedCentralGoogle Scholar
  43. 43.
    Cheung YT, Lim SR, Ho HK, Chan A (2013) Cytokines as mediators of chemotherapy-associated cognitive changes: current evidence, limitations and directions for future research. PLoS ONE. doi: 10.1371/journal.pone.0081234 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Woods JA, Wilund KR, Martin SA, Kistler BM (2012) Exercise, inflammation and aging. Aging Dis 3(1):130–140PubMedGoogle Scholar
  45. 45.
    Mustian KM, Sprod LK, Janelsins M, Peppone LJ, Mohile S (2012) Exercise recommendations for cancer-related fatigue, cognitive impairment, sleep problems, depression, pain, anxiety, and physical dysfunction: a review. Oncol Hematol Rev 8(2):81–88PubMedPubMedCentralGoogle Scholar
  46. 46.
    Kesler S, Janelsins M, Koovakkattu D et al (2013) Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 30(Suppl.):S109–S116. doi: 10.1016/j.bbi.2012.05.017 CrossRefPubMedGoogle Scholar
  47. 47.
    Lindner OC, Phillips B, McCabe MG et al (2014) A meta-analysis of cognitive impairment following adult cancer chemotherapy. Neuropsychology 28(5):726–740. doi: 10.1037/neu0000064 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Desantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64:52–62. doi: 10.3322/caac.21203 CrossRefPubMedGoogle Scholar
  49. 49.
    Lynch BM, Dunstan DW, Healy GN, Winkler E, Eakin E, Owen N (2010) Objectively measured physical activity and sedentary time of breast cancer survivors, and associations with adiposity: findings from NHANES (2003–2006). Cancer Causes Control 21(2):283–288. doi: 10.1007/s10552-009-9460-6 CrossRefPubMedGoogle Scholar
  50. 50.
    Bluethmann SM, Mariotto AB, Rowland JH. Anticipating the “Silver Tsunami”: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol Biomark Prev 25(7). doi: 10.1158/1055-9965.EPI-16-0133

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Diane K. Ehlers
    • 1
    Email author
  • Susan Aguiñaga
    • 1
  • Josh Cosman
    • 2
    • 3
  • Joan Severson
    • 3
  • Arthur F. Kramer
    • 4
    • 5
  • Edward McAuley
    • 1
  1. 1.Department of Kinesiology and Community HealthUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Pfizer IncorporatedCambridgeUSA
  3. 3.Digital ArtefactsIowa CityUSA
  4. 4.Office of the ProvostNortheastern UniversityBostonUSA
  5. 5.Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations