Skip to main content
Log in

Interaction of mammographic breast density with menopausal status and postmenopausal hormone use in relation to the risk of aggressive breast cancer subtypes

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

We examined the associations of mammographic breast density with breast cancer risk by tumor aggressiveness and by menopausal status and current postmenopausal hormone therapy.

Methods

This study included 2596 invasive breast cancer cases and 4059 controls selected from participants of four nested case–control studies within four established cohorts: the Mayo Mammography Health Study, the Nurses’ Health Study, Nurses’ Health Study II, and San Francisco Mammography Registry. Percent breast density (PD), absolute dense (DA), and non-dense areas (NDA) were assessed from digitized film-screen mammograms using a computer-assisted threshold technique and standardized across studies. We used polytomous logistic regression to quantify the associations of breast density with breast cancer risk by tumor aggressiveness (defined as presence of at least two of the following tumor characteristics: size ≥2 cm, grade 2/3, ER-negative status, or positive nodes), stratified by menopausal status and current hormone therapy.

Results

Overall, the positive association of PD and borderline inverse association of NDA with breast cancer risk was stronger in aggressive vs. non-aggressive tumors (≥51 vs. 11–25% OR 2.50, 95% CI 1.94–3.22 vs. OR 2.03, 95% CI 1.70–2.43, p-heterogeneity = 0.03; NDA 4th vs. 2nd quartile OR 0.54, 95% CI 0.41–0.70 vs. OR 0.71, 95% CI 0.59–0.85, p-heterogeneity = 0.07). However, there were no differences in the association of DA with breast cancer by aggressive status. In the stratified analysis, there was also evidence of a stronger association of PD and NDA with aggressive tumors among postmenopausal women and, in particular, current estrogen+progesterone users (≥51 vs. 11–25% OR 3.24, 95% CI 1.75–6.00 vs. OR 1.93, 95% CI 1.25–2.98, p-heterogeneity = 0.01; NDA 4th vs. 2nd quartile OR 0.43, 95% CI 0.21–0.85 vs. OR 0.56, 95% CI 0.35–0.89, p-heterogeneity = 0.01), even though the interaction was not significant.

Conclusion

Our findings suggest that associations of mammographic density with breast cancer risk differ by tumor aggressiveness. While there was no strong evidence that these associations differed by menopausal status or hormone therapy, they did appear more prominent among current estrogen+progesterone users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6(10):798–808

    Article  PubMed  Google Scholar 

  2. Ginsburg OM, Martin LJ, Boyd NF (2008) Mammographic density, lobular involution, and risk of breast cancer. Br J Cancer 99(9):1369–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tamimi RM, Byrne C, Colditz GA, Hankinson SE (2007) Endogenous hormone levels, mammographic density, and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 99(15):1178–1187

    Article  CAS  PubMed  Google Scholar 

  4. Harvey JA, Bovbjerg VE (2004) Quantitative assessment of mammographic breast density: relationship with breast cancer risk. Radiology 230(1):29–41

    Article  PubMed  Google Scholar 

  5. Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87(9):670–675

    Article  CAS  PubMed  Google Scholar 

  6. Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87(21):1622–1629

    Article  CAS  PubMed  Google Scholar 

  7. Pettersson A, Hankinson S, Willett W, Lagiou P, Trichopoulos D, Tamimi R (2011) Nondense mammographic area and risk of breast cancer. Breast Cancer Res 13(5):R100

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aitken Z, McCormack VA, Highnam RP, Martin L, Gunasekara A, Melnichouk O, Mawdsley G, Peressotti C, Yaffe M, Boyd NF, dos Santos Silva I (2010) Screen-film mammographic density and breast cancer risk: a comparison of the volumetric standard mammogram form and the interactive threshold measurement methods. Cancer Epidemiol Biomark Prev 19(2):418–428

    Article  Google Scholar 

  9. Stone J, Ding J, Warren RM, Duffy SW, Hopper JL (2010) Using mammographic density to predict breast cancer risk: dense area or percentage dense area. Breast Cancer Res 12(6):R97

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, Astrahan M, Siozon CC, Pike MC (2003) Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev 12(4):332–338

    Google Scholar 

  11. Maskarinec G, Pagano I, Lurie G, Wilkens LR, Kolonel LN (2005) Mammographic density and breast cancer risk. Am J Epidemiol 162(8):743–752

    Article  PubMed  Google Scholar 

  12. Boyd N, Martin L, Gunasekara A, Melnichouk O, Maudsley G, Peressotti C, Yaffe M, Minkin S (2009) Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomark Prev 18(6):1754–1762

    Article  Google Scholar 

  13. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA (2007) Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomark Prev 16(1):43–49

    Article  Google Scholar 

  14. Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, Vachon C, Bakker MF, Giles GG, Chia KS, Czene K, Eriksson L, Hall P, Hartman M, Warren RM, Hislop G, Chiarelli AM, Hopper JL, Krishnan K, Li J, Li Q, Pagano I, Rosner BA, Wong CS, Scott C, Stone J, Maskarinec G, Boyd NF, van Gils CH, Tamimi RM (2014) Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 106(5):dju078

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kerlikowske K, Cook AJ, Buist DS, Cummings SR, Vachon C, Vacek P, Miglioretti DL (2010) Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use. J Clin Oncol 28(24):3830–3837

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yaghjyan L, Colditz GA, Rosner B, Tamimi RM (2012) Mammographic breast density and breast cancer risk by menopausal status, postmenopausal hormone use and a family history of breast cancer. Cancer Causes Control 23:785

    Article  PubMed  Google Scholar 

  17. Yaghjyan L, Colditz GA, Collins LC, Schnitt SJ, Rosner B, Vachon C, Tamimi RM (2011) Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst 103(15):1179–1189

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bertrand KA, Tamimi RM, Scott CG, Jensen MR, Pankratz V, Visscher D, Norman A, Couch F, Shepherd J, Fan B, Chen YY, Ma L, Beck AH, Cummings SR, Kerlikowske K, Vachon CM (2013) Mammographic density and risk of breast cancer by age and tumor characteristics. Breast Cancer Res 15(6):R104

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schnitt SJ (2010) Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Mod Pathol 23(S2):S60–S64

    Article  PubMed  Google Scholar 

  20. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, Palacios J, Richardson AL, Schnitt SJ, Schmitt FC, Tan P-H, Tse GM, Badve S, Ellis IO (2010) Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 12(4):1–12

    Article  Google Scholar 

  21. Arpino G, Milano M, De Placido S (2015) Features of aggressive breast cancer. Breast 24(5):594–600

    Article  PubMed  Google Scholar 

  22. Cianfrocca M, Goldstein LJ (2004) Prognostic and predictive factors in early-stage breast cancer. Oncologist 9(6):606–616

    Article  PubMed  Google Scholar 

  23. Bentzon N, Düring M, Rasmussen BB, Mouridsen H, Kroman N (2008) Prognostic effect of estrogen receptor status across age in primary breast cancer. Int J Cancer 122(5):1089–1094

    Article  CAS  PubMed  Google Scholar 

  24. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA 295(21):2492–2502

    Article  CAS  PubMed  Google Scholar 

  25. Dunnwald LK, Rossing MA, Li CI (2007) Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res 9(1):R6

    Article  PubMed  PubMed Central  Google Scholar 

  26. NCCN clinical practice guidelines in oncology: breast cancer. V 1.2016. National Comprehensive Cancer Network. http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 15 Dec 2015

  27. Heine JJ, Scott CG, Sellers TA, Brandt KR, Serie DJ, Wu FF, Morton MJ, Schueler BA, Couch FJ, Olson JE, Pankratz VS, Vachon CM (2012) A novel automated mammographic density measure and breast cancer risk. J Natl Cancer Inst 104(13):1028–1037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olson JE, Sellers TA, Scott CG, Schueler BA, Brandt KR, Serie DJ, Jensen MR, Wu FF, Morton MJ, Heine JJ, Couch FJ, Pankratz VS, Vachon CM (2012) The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo Mammography Health Study cohort. Breast Cancer Res 14(6):R147

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tamimi RM, Hankinson SE, Colditz GA, Byrne C (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomark Prev 14(11 Pt 1):2641–2647

    Article  CAS  Google Scholar 

  30. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Can Res 66(4):2476–2482

    Article  CAS  Google Scholar 

  31. Colditz GA, Hankinson SE (2005) The Nurses’ Health Study: lifestyle and health among women. Nat Rev Cancer 5(5):388–396

    Article  CAS  PubMed  Google Scholar 

  32. Kerlikowske K, Carney PA, Geller B, Mandelson MT, Taplin SH, Malvin K, Ernster V, Urban N, Cutter G, Rosenberg R, Ballard-Barbash R (2000) Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann Intern Med 133(11):855–863

    Article  CAS  PubMed  Google Scholar 

  33. Kerlikowske K, Shepherd J, Creasman J, Tice JA, Ziv E, Cummings SR (2005) Are breast density and bone mineral density independent risk factors for breast cancer? J Natl Cancer Inst 97(5):368–374

    Article  PubMed  Google Scholar 

  34. Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K (2004) Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomark Prev 13(12):2090–2095

    CAS  Google Scholar 

  35. Bertrand KA, Rosner B, Eliassen AH, Hankinson SE, Rexrode KM, Willett W, Tamimi RM (2015) Premenopausal plasma 25-hydroxyvitamin D, mammographic density, and risk of breast cancer. Breast Cancer Res Treat 149(2):479–487

    Article  CAS  PubMed  Google Scholar 

  36. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ (1996) Automated analysis of mammographic densities. Phys Med Biol 41(5):909

    Article  CAS  PubMed  Google Scholar 

  37. Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J, Malkov S, Vittinghoff E, Cummings SR (2011) Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomark Prev 20(7):1473–1482

    Article  Google Scholar 

  38. Byng JW, Boyd NF, Little L, Lockwood G, Fishell E, Jong RA, Yaffe MJ (1996) Symmetry of projection in the quantitative analysis of mammographic images. Eur J Cancer Prev 5(5):319–327

    Article  CAS  PubMed  Google Scholar 

  39. Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE (2000) Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res 60(14):3744–3748

    CAS  PubMed  Google Scholar 

  40. Bagaria SP, Ray PS, Sim MS, Ye X, Shamonki JM, Cui X, Giuliano AE (2014) Personalizing breast cancer staging by the inclusion of ER, PR, and HER2. JAMA Surg 149(2):125–129

    Article  PubMed  Google Scholar 

  41. Arpino G, Bardou VJ, Clark GM, Elledge RM (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6(3):R149–R156

    Article  PubMed  PubMed Central  Google Scholar 

  42. Phipps AI, Li CI, Kerlikowske K, Barlow WE, Buist DS (2010) Risk factors for ductal, lobular, and mixed ductal-lobular breast cancer in a screening population. Cancer Epidemiol Biomarkers Prev 19(6):1643–1654

    Article  PubMed  PubMed Central  Google Scholar 

  43. Putti TC, El-Rehim DM, Rakha EA, Paish CE, Lee AH, Pinder SE, Ellis IO (2005) Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol 18(1):26–35

    Article  CAS  PubMed  Google Scholar 

  44. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Phipps AI, Buist DS, Malone KE, Barlow WE, Porter PL, Kerlikowske K, O’Meara ES, Li CI (2012) Breast density, body mass index, and risk of tumor marker-defined subtypes of breast cancer. Ann Epidemiol 22(5):340–348

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aiello EJ, Buist DS, White E, Porter PL (2005) Association between mammographic breast density and breast cancer tumor characteristics. Cancer Epidemiol Biomark Prev 14(3):662–668

    Article  Google Scholar 

  47. Sala E, Solomon L, Warren R, McCann J, Duffy S, Luben R, Day N (2000) Size, node status and grade of breast tumours: association with mammographic parenchymal patterns. Eur Radiol 10(1):157–161

    Article  CAS  PubMed  Google Scholar 

  48. Ding J, Warren R, Girling A, Thompson D, Easton D (2010) Mammographic density, estrogen receptor status and other breast cancer tumor characteristics. Breast J 16(3):279–289

    Article  PubMed  Google Scholar 

  49. Ghosh K, Brandt KR, Sellers TA, Reynolds C, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Vachon CM (2008) Association of mammographic density with the pathology of subsequent breast cancer among postmenopausal women. Cancer Epidemiol Biomark Prev 17(4):872–879

    Article  Google Scholar 

  50. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, White E (2000) Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 92(13):1081–1087

    Article  CAS  PubMed  Google Scholar 

  51. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225(1):165–175

    Article  PubMed  Google Scholar 

  52. Leconte I, Feger C, Galant C, Berliere M, Berg BV, D’Hoore W, Maldague B (2003) Mammography and subsequent whole-breast sonography of nonpalpable breast cancers: the importance of radiologic breast density. AJR Am J Roentgenol 180(6):1675–1679

    Article  PubMed  Google Scholar 

  53. Porter GJR, Evans AJ, Cornford EJ, Burrell HC, James JJ, Lee AHS, Chakrabarti J (2007) Influence of mammographic parenchymal pattern in screening-detected and interval invasive breast cancers on pathologic features, mammographic features, and patient survival. Am J Roentgenol 188(3):676–683

    Article  Google Scholar 

  54. Greene F (2002) American Cancer Society, American Joint Committee on Cancer. AJCC cancer staging manual. Springer, New York

    Google Scholar 

  55. Mook S, Schmidt MK, Rutgers EJ, van de Velde AO, Visser O, Rutgers SM, Armstrong N, van’t Veer LJ, Ravdin PM (2009) Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol 10(11):1070–1076

    Article  PubMed  Google Scholar 

  56. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280

    CAS  PubMed  Google Scholar 

  57. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Article  CAS  PubMed  Google Scholar 

  58. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, Wong JEL, Liu ET, Bergh J, Kuznetsov VA, Miller LD (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Can Res 66(21):10292–10301

    Article  CAS  Google Scholar 

  59. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (Grant Numbers CA140286 to C. M.V. and K.K., CA087969 to R.M.T., UM1 CA176726 to W.W., UM1 CA186107 to M.S.), Mayo Clinic Specialized Program of Research Excellence (SPORE) in Breast Cancer (Grant Number P50 CA116201 to M.P.G. and J.N.I.), Mayo Clinic Cancer Center, and Breast Cancer Research Foundation. We would like to thank the participants and staff of the NHS and NHSII for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lusine Yaghjyan.

Ethics declarations

This study was approved by the Institutional Review Boards at the Mayo Clinic, Brigham and Women’s Hospital, and the University of California, San Francisco. Informed consent was obtained or implied by return of questionnaires (NHS, NHSII).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghjyan, L., Tamimi, R.M., Bertrand, K.A. et al. Interaction of mammographic breast density with menopausal status and postmenopausal hormone use in relation to the risk of aggressive breast cancer subtypes. Breast Cancer Res Treat 165, 421–431 (2017). https://doi.org/10.1007/s10549-017-4341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4341-2

Keywords

Navigation