Is breast compression associated with breast cancer detection and other early performance measures in a population-based breast cancer screening program?



We aimed to investigate early performance measures in a population-based breast cancer screening program stratified by compression force and pressure at the time of mammographic screening examination. Early performance measures included recall rate, rates of screen-detected and interval breast cancers, positive predictive value of recall (PPV), sensitivity, specificity, and histopathologic characteristics of screen-detected and interval breast cancers.


Information on 261,641 mammographic examinations from 93,444 subsequently screened women was used for analyses. The study period was 2007–2015. Compression force and pressure were categorized using tertiles as low, medium, or high. χ 2 test, t tests, and test for trend were used to examine differences between early performance measures across categories of compression force and pressure. We applied generalized estimating equations to identify the odds ratios (OR) of screen-detected or interval breast cancer associated with compression force and pressure, adjusting for fibroglandular and/or breast volume and age.


The recall rate decreased, while PPV and specificity increased with increasing compression force (p for trend <0.05 for all). The recall rate increased, while rate of screen-detected cancer, PPV, sensitivity, and specificity decreased with increasing compression pressure (p for trend <0.05 for all). High compression pressure was associated with higher odds of interval breast cancer compared with low compression pressure (1.89; 95% CI 1.43–2.48).


High compression force and low compression pressure were associated with more favorable early performance measures in the screening program.

This is a preview of subscription content, log in to check access.


  1. 1.

    Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L (2006) European guidelines for quality assurance in breast cancer screening and diagnosis, 4th edn. European Communities, Luxemburg

    Google Scholar 

  2. 2.

    DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A (2015) International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev 24:1495–1506. doi:10.1158/1055-9965.epi-15-0535

    Article  PubMed  Google Scholar 

  3. 3.

    Lauby-Secretan B, Scoccianti C, Loomis D et al (2015) Breast-cancer screening–viewpoint of the IARC Working Group. N Engl J Med 372:2353–2358. doi:10.1056/NEJMsr1504363

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Kopans DB (2006) Mammography and the normal breast imaging. Lippincott Williams & Wilkins, London, pp 357–363

    Google Scholar 

  5. 5.

    Yaffe MJ (2010) Basic physics of digital mammography. In: Bick U, Diekmann F (eds) Digital mammography. Springer, Berlin, pp 1–11

    Google Scholar 

  6. 6.

    Poulos A, Rickard M (1997) Compression in mammography and the perception of discomfort. Australas Radiol 41:247–252

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Miller D, Martin I, Herbison P (2002) Interventions for relieving the pain and discomfort of screening mammography. Cochrane Database Syst Rev. doi:10.1002/14651858.cd002942

    Google Scholar 

  8. 8.

    Dibble SL, Israel J, Nussey B, Sayre JW, Brenner RJ, Sickles EA (2005) Mammography with breast cushions. Womens Health Issues 15:55–63. doi:10.1016/j.whi.2004.12.001

    Article  PubMed  Google Scholar 

  9. 9.

    Whelehan P, Evans A, Wells M, Macgillivray S (2013) The effect of mammography pain on repeat participation in breast cancer screening: a systematic review. Breast 22:389–394. doi:10.1016/j.breast.2013.03.003

    Article  PubMed  Google Scholar 

  10. 10.

    Saunders RS Jr, Samei E (2008) The effect of breast compression on mass conspicuity in digital mammography. Med Phys 35:4464–4473. doi:10.1118/1.2977600

    Article  PubMed  Google Scholar 

  11. 11.

    de Groot JE, Broeders MJ, Branderhorst W, den Heeten GJ, Grimbergen CA (2013) A novel approach to mammographic breast compression: improved standardization and reduced discomfort by controlling pressure instead of force. Med Phys 40:081901. doi:10.1118/1.4812418

    Article  PubMed  Google Scholar 

  12. 12.

    Branderhorst W, de Groot JE, Highnam R et al (2015) Mammographic compression–a need for mechanical standardization. Eur J Radiol 84:596–602. doi:10.1016/j.ejrad.2014.12.012

    Article  PubMed  Google Scholar 

  13. 13.

    de Groot JE, Branderhorst W, Grimbergen CA, den Heeten GJ, Broeders MJ (2015) Towards personalized compression in mammography: a comparison study between pressure- and force-standardization. Eur J Radiol 84:384–391. doi:10.1016/j.ejrad.2014.12.005

    Article  PubMed  Google Scholar 

  14. 14.

    Holland K, Sechopoulos I, den Heeten G, Mann RM, Karssemeijer N (2016) Performance of Breast Cancer Screening Depends on Mammographic Compression. In: Tingberg A, Lång K, Timberg P (eds) Breast imaging: 13th international workshop, IWDM 2016, Malmö, Sweden, June 19–22, 2016, proceedings. Springer, Cham, pp 183–189

    Google Scholar 

  15. 15.

    Larsen IK, Smastuen M, Johannesen TB et al (2009) Data quality at the Cancer Registry of Norway: an overview of comparability, completeness, validity and timeliness. Eur J Cancer 45:1218–1231. doi:10.1016/j.ejca.2008.10.037

    Article  PubMed  Google Scholar 

  16. 16.

    Hofvind S, Geller B, Vacek PM, Thoresen S, Skaane P (2007) Using the European guidelines to evaluate the Norwegian Breast Cancer Screening Program. Eur J Epidemiol 22:447–455. doi:10.1007/s10654-007-9137-y

    Article  PubMed  Google Scholar 

  17. 17.

    Matakina Technology Limited (2015) Volpara solutions—Volpara density. Accessed 1 Oct 2015

  18. 18.

    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Zeger SL, Liang KY (1992) An overview of methods for the analysis of longitudinal data. Stat Med 11:1825–1839

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Homish GG, Edwards EP, Eiden RD, Leonard KE (2010) Analyzing family data: a GEE approach for substance use researchers. Addict Behav 35:558–563. doi:10.1016/j.addbeh.2010.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Helvie MA, Chan HP, Adler DD, Boyd PG (1994) Breast thickness in routine mammograms: effect on image quality and radiation dose. Am J Roentgenol 163:1371–1374

    CAS  Article  Google Scholar 

  22. 22.

    Poulos A, McLean D, Rickard M, Heard R (2003) Breast compression in mammography: how much is enough? Australas Radiol 47:121–126

    Article  PubMed  Google Scholar 

  23. 23.

    Stuedal A, Ma H, Bernstein L, Pike MC, Ursin G (2008) Does breast size modify the association between mammographic density and breast cancer risk? Cancer Epidemiol Biomarkers Prev 17:621–627. doi:10.1158/1055-9965.epi-07-2554

    Article  PubMed  Google Scholar 

  24. 24.

    Carp SA, Selb J, Fang Q et al (2008) Dynamic functional and mechanical response of breast tissue to compression. Opt Express 16:16064–16078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Dustler M, Andersson I, Brorson H et al (2012) Breast compression in mammography: pressure distribution patterns. Acta Radiol 53:973–980. doi:10.1258/ar.2012.120238

    Article  PubMed  Google Scholar 

  26. 26.

    Romsdahl MM, McGrath RG, Hoppe E, McGrew EA (1965) Experimental model for the study of tumor cells in the blood. Acta Cytol 9:141–145

    CAS  PubMed  Google Scholar 

  27. 27.

    Watmough DJ, Quan KM, Aspden RM, Mallard JR (1992) Study of tissue compression in breast phantoms: possible implications for the use of X-ray mammography as a method of imaging breast carcinoma. Eur J Surg Oncol 18:538–544

    CAS  PubMed  Google Scholar 

  28. 28.

    Watmough DJ, Quan KM, Aspden RM (1992) Unfavorable outcome of recent breast cancer screening trials: why? AJR Am J Roentgenol 159:1125–1126

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Watmough DJ, Quan KM, Aspden RM (1993) Breast compression: a preliminary study. J Biomed Eng 15:121–126

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Fornvik D, Andersson I, Dustler M et al (2013) No evidence for shedding of circulating tumor cells to the peripheral venous blood as a result of mammographic breast compression. Breast Cancer Res Treat 141:187–195. doi:10.1007/s10549-013-2674-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Mercer CE, Hogg P, Lawson R, Diffey J, Denton ER (2013) Practitioner compression force variability in mammography: a preliminary study. Br J Radiol 86:20110596. doi:10.1259/bjr.20110596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Waade GG, Moshina N, Saebuodegard S, Hogg P, Hofvind S (2017) Compression forces used in the Norwegian Breast Cancer Screening Program. Br J Radiol. doi:10.1259/bjr.20160770

    PubMed  Google Scholar 

  33. 33.

    Eklund GW, Cardenosa G, Parsons W (1994) Assessing adequacy of mammographic image quality. Radiology 190:297–307

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Eklund GW (2000) The art of mammographic positioning. In: Friedrich M, Sickles EA (eds) Radiological diagnosis of breast diseases. Springer, Berlin, pp 75–88. doi:10.1007/978-3-642-60919-0_6

    Google Scholar 

Download references


We would like to thank Hilde Trå Hervig and Grethe Johansen, radiographers at the breast diagnostic center of Stavanger University Hospital, and Berit Hanestad, radiographer at the breast diagnostic center of Haukeland University Hospital, for help and support in collecting and processing the density data used in this study. We would also like to thank Kaitlyn Tsuruda, consultant at the Cancer Registry of Norway, for assistance with statistical analysis and epidemiologic insight in the study.

Author information



Corresponding author

Correspondence to Solveig Hofvind.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moshina, N., Sebuødegård, S. & Hofvind, S. Is breast compression associated with breast cancer detection and other early performance measures in a population-based breast cancer screening program?. Breast Cancer Res Treat 163, 605–613 (2017).

Download citation


  • Mammography
  • Breast cancer screening
  • Early performance measures
  • Breast compression