Skip to main content

Advertisement

Log in

Failure patterns according to molecular subtype in patients with invasive breast cancer following postoperative adjuvant radiotherapy: long-term outcomes in contemporary clinical practice

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Although gene expression profiling provides critical information, knowledge remains limited regarding the differential effects of molecular subtype on clinical course. This study evaluated the impact of molecular status on long-term patterns of failure in patients with non-metastatic breast cancer.

Methods

We analyzed data from 1181 individuals with invasive breast cancer undergoing surgery plus PORT from 2003 to 2011. Molecular subtypes were defined as luminal A (LA), luminal B (LB)-HER2(−), LB-HER2(+), HER2, and triple-negative (TN) based on the 2013 St. Gallen Consensus criteria. Competing risks analysis and baseline hazard rate function plots were used to explore subtype-specific recurrence patterns.

Results

The 10-year overall survival rates of LA, LB-HER2(−), LB-HER2(+), HER2, and TN groups were 96, 93, 94, 84, and 85%, respectively (P < 0.001). Distant metastatic events differed significantly according to molecular subtype (P < 0.001). In competing risks regression analysis, initial development of distant metastasis was the highest with TN tumors, followed by HER2, LB-HER2(−), and LB-HER2(+) subtypes (P = 0.005). Regarding preferential sites of distant metastasis, the risk of initial brain metastasis was significantly higher with HER2 tumors, followed by TN tumors (P = 0.001). A low-level but sustained metastatic risk increment was observed in luminal tumors, whereas TN and HER2 subtypes showed a short-term risk surge within 5 years.

Conclusion

From the significant impact of molecular profile on distant metastasis, subtype-specific individualization of systemic treatment and close surveillance are suggested. The preferential and long-term risk of brain metastasis in the HER2 subtype underlines the importance of alternative anti-HER2 therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220:263–280

    Article  CAS  PubMed  Google Scholar 

  2. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  3. Sotiriou C, Neo SY, McShane LM et al (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goldhirsch A, Winer EP, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24:2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5:412–424

    Article  PubMed  PubMed Central  Google Scholar 

  6. National Comprehensive Cancer Network® (2016) Breast Cancer. Version 2.2016. In: NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed 10 Mar 2017

  7. Tran B, Bedard PL (2011) Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 13:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncology 22:1233–1239

    PubMed  PubMed Central  Google Scholar 

  9. Ross JS, Slodkowska EA, Symmans WF et al (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368

    Article  CAS  PubMed  Google Scholar 

  10. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loibl S, Gianni L (2016) HER2-positive breast cancer. Lancet. doi:10.1016/S0140-6736(16)32417-5

    Google Scholar 

  12. Satagopan JM, Ben-Porat L, Berwick M (2004) A note on competing risks in survival data analysis. Br J Cancer 91:1229–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scrucca L, Santucci A, Aversa F (2007) Competing risk analysis using R: an easy guide for clinicians. Bone Marrow Transplant 40:381–387

    Article  CAS  PubMed  Google Scholar 

  14. Scrucca L, Santucci A, Aversa F (2010) Regression modeling of competing risk using R: an in depth guide for clinicians. Bone Marrow Transplant 45:1388–1395

    Article  CAS  PubMed  Google Scholar 

  15. Voduc KD, Cheang MC, Tyldesley S et al (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  PubMed  Google Scholar 

  16. Lee Y, Kang E, Lee AS et al (2015) Outcomes and recurrence patterns according to breast cancer subtypes in Korean women. Breast Cancer Res Treat 151:183–190

    Article  PubMed  Google Scholar 

  17. Hennigs A, Riedel F, Gondos A et al (2016) Prognosis of breast cancer molecular subtypes in routine clinical care: a large prospective cohort study. BMC Cancer 16:734

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shim HJ, Kim SH, Kang BJ et al (2014) Breast cancer recurrence according to molecular subtype. Asian Pac J Cancer Prev 15:5539–5544

    Article  PubMed  Google Scholar 

  19. Haffty BG, Yang Q, Reiss M et al (2006) Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol 24:5652–5657

    Article  PubMed  Google Scholar 

  20. Millar EK, Graham PH, O’Toole SA et al (2009) Prediction of local recurrence, distant metastases, and death after breast-conserving therapy in early-stage invasive breast cancer using a five-biomarker panel. J Clin Oncol 27:4701–4708

    Article  PubMed  Google Scholar 

  21. Sihto H, Lundin J, Lundin M et al (2011) Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res 13:R87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soni A, Ren Z, Hameed O et al (2015) Breast cancer subtypes predispose the site of distant metastases. Am J Clin Pathol 143:471–478

    Article  PubMed  Google Scholar 

  23. Alqaisi A, Chen L, Romond E et al (2014) Impact of estrogen receptor (ER) and human epidermal growth factor receptor-2 (HER2) co-expression on breast cancer disease characteristics: implications for tumor biology and research. Breast Cancer Res Treat 148:437–444

    Article  CAS  PubMed  Google Scholar 

  24. Kaplan MA, Arslan UY, Isikdogan A et al (2016) Biological subtypes and distant relapse pattern in breast cancer patients after curative surgery (Study of anatolian society of medical oncology). Breast Care 11:248–252

    Article  PubMed  Google Scholar 

  25. Park HS, Kim S, Kim K et al (2012) Pattern of distant recurrence according to the molecular subtypes in Korean women with breast cancer. World J Surg Oncol 10:4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu SG, Sun JY, Yang LC et al (2016) Patterns of distant metastasis in Chinese women according to breast cancer subtypes. Oncotarget 7:47975–47984

    PubMed  PubMed Central  Google Scholar 

  27. Smid M, Wang Y, Zhang Y et al (2008) Subtypes of breast cancer show preferential site of relapse. Cancer Res 68:3108–3114

    Article  CAS  PubMed  Google Scholar 

  28. Kimbung S, Loman N, Hedenfalk I (2015) Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol 35:85–95

    Article  CAS  PubMed  Google Scholar 

  29. Musolino A, Ciccolallo L, Panebianco M et al (2011) Multifactorial central nervous system recurrence susceptibility in patients with HER2-positive breast cancer: epidemiological and clinical data from a population-based cancer registry study. Cancer 117:1837–1846

    Article  PubMed  Google Scholar 

  30. Kennecke H, Yerushalmi R, Woods R et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277

    Article  PubMed  Google Scholar 

  31. Gaedcke J, Traub F, Milde S et al (2007) Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol 20:864–870

    Article  CAS  PubMed  Google Scholar 

  32. Gabos Z, Sinha R, Hanson J et al (2006) Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. J Clin Oncol 24:5658–5663

    Article  CAS  PubMed  Google Scholar 

  33. Palmieri D, Bronder JL, Herring JM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67:4190–4198

    Article  CAS  PubMed  Google Scholar 

  34. Yonemori K, Tsuta K, Ono M et al (2010) Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer 116:302–308

    Article  PubMed  Google Scholar 

  35. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  36. Koo T, Kim IA (2016) Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment. Radiat Oncol J 34:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Whole-brain radiation therapy or stereotactic radiosurgery with or without lapatinib ditosylate in treating patients with brain metastasis from HER2-positive breast cancer. In: ClinicalTrials.gov. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCT01622868?term=01622868&rank=1. Accessed 10 Mar 2017

  38. Ribelles N, Perez-Villa L, Jerez JM et al (2013) Pattern of recurrence of early breast cancer is different according to intrinsic subtype and proliferation index. Breast Cancer Res 15:R98

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work supported by grants from the Korean Ministry of Health and Welfare and to Kim IA (No. 0820010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Ah Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board (B-1505/298-116). The retrospective design exempted this study from the requirement to obtain written informed consent from the patients.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Y.J., Lee, SW., Choi, N. et al. Failure patterns according to molecular subtype in patients with invasive breast cancer following postoperative adjuvant radiotherapy: long-term outcomes in contemporary clinical practice. Breast Cancer Res Treat 163, 555–563 (2017). https://doi.org/10.1007/s10549-017-4206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4206-8

Keywords

Navigation