Every exercise bout matters: linking systemic exercise responses to breast cancer control

Abstract

Cumulative epidemiological evidence shows that regular exercise lowers the risk of developing breast cancer and decreases the risk of disease recurrence. The causality underlying this relation has not been fully established, and the exercise recommendations for breast cancer patients follow the general physical activity guidelines, prescribing 150 min of exercise per week. Thus, elucidations of the causal mechanisms are important to prescribe and implement the most optimal training regimen in breast cancer prevention and treatment. The prevailing hypothesis on the positive association within exercise oncology has focused on lowering of the basal systemic levels of cancer risk factors with exercise training. However, another rather overlooked systemic exercise response is the marked acute increases in several potential anti-cancer components during each acute exercise bout. Here, we review the evidence of the exercise-mediated changes in systemic components with the ability to influence breast cancer progression. In the first part, we focus on systemic risk factors for breast cancer, i.e., sex hormones, insulin, and inflammatory markers, and their adaptation to long-term training. In the second part, we describe the systemic factors induced acutely during exercise, including catecholamines and myokines. In conclusion, we propose that the transient increases in exercise factors during acute exercise appear to be mediating the positive effect of regular exercise on breast cancer progression.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Moore SC, Lee IM, Weiderpass E et al (2016) Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 176:816–825

    Article  PubMed  Google Scholar 

  2. 2.

    Ballard-Barbash R, Friedenreich CM, Courneya KS et al (2012) Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J Natl Cancer Inst 104:815–840

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jones LW, Kwan ML, Weltzien E et al (2016) Exercise and prognosis on the basis of clinicopathologic and molecular features in early-stage breast cancer: the LACE and pathways studies. Cancer Res 76:5415–5422

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Speck RM, Courneya KS, Masse LC et al (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 4:87–100

    Article  PubMed  Google Scholar 

  5. 5.

    McTiernan A (2008) Mechanisms linking physical activity with cancer. Nat Rev Cancer 8:205–211

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dethlefsen C, Lillelund C, Midtgaard J et al (2016) Exercise regulates breast cancer cell viability: systemic training adaptations versus acute exercise responses. Breast Cancer Res Treat 159(3):469–479

    Article  PubMed  Google Scholar 

  7. 7.

    Rose DP, Vona-Davis L (2010) Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas 66:33–38

    Article  PubMed  Google Scholar 

  8. 8.

    Key T, Appleby P, Barnes I et al (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94:606–616

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Key TJ, Appleby PN, Reeves GK et al (2013) Sex hormones and risk of breast cancer in premenopausal women: a collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol 14:1009–1019

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kaaks R, Tikk K, Sookthai D et al (2013) Premenopausal serum sex hormone levels in relation to breast cancer risk, overall and by hormone receptor status-results from the EPIC cohort. Int J Cancer 134(8):1947–1957

    Article  PubMed  Google Scholar 

  11. 11.

    Gyllenhammer LE, Vanni AK, Byrd-Williams CE et al (2013) Objective habitual physical activity and estradiol levels in obese Latina adolescents. J Phys Act Health 10:727–733

    Article  PubMed  Google Scholar 

  12. 12.

    Verkasalo PK, Thomas HV, Appleby PN et al (2001) Circulating levels of sex hormones and their relation to risk factors for breast cancer: a cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom). Cancer Causes Control 12:47–59

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Tworoger SS, Missmer SA, Eliassen AH et al (2007) Physical activity and inactivity in relation to sex hormone, prolactin, and insulin-like growth factor concentrations in premenopausal women - exercise and premenopausal hormones. Cancer Causes Control 18:743–752

    Article  PubMed  Google Scholar 

  14. 14.

    Smith AJ, Phipps WR, Arikawa AY et al (2011) Effects of aerobic exercise on premenopausal sex hormone levels: results of the WISER study, a randomized clinical trial in healthy, sedentary, eumenorrheic women. Cancer Epidemiol Biomark Prev 20:1098–1106

    CAS  Article  Google Scholar 

  15. 15.

    McTiernan A, Tworoger SS, Ulrich CM et al (2004) Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res 64:2923–2928

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    McTiernan A, Tworoger SS, Rajan KB et al (2004) Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomark Prev 13:1099–1105

    CAS  Google Scholar 

  17. 17.

    Bertone-Johnson ER, Tworoger SS, Hankinson SE (2009) Recreational physical activity and steroid hormone levels in postmenopausal women. Am J Epidemiol 170:1095–1104

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Liedtke S, Schmidt ME, Becker S et al (2011) Physical activity and endogenous sex hormones in postmenopausal women: to what extent are observed associations confounded or modified by BMI? Cancer Causes Control 22:81–89

    Article  PubMed  Google Scholar 

  19. 19.

    McTiernan A, Wu L, Chen C et al (2006) Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity 14:1662–1677

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Rinaldi S, Kaaks R, Friedenreich CM et al (2014) Physical activity, sex steroid, and growth factor concentrations in pre- and post-menopausal women: a cross-sectional study within the EPIC cohort. Cancer Causes Control 25:111–124

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    van Gils CH, Peeters PH, Schoenmakers MC et al (2009) Physical activity and endogenous sex hormone levels in postmenopausal women: a cross-sectional study in the Prospect-EPIC Cohort. Cancer Epidemiol Biomark Prev 18:377–383

    Article  Google Scholar 

  22. 22.

    Ennour-Idrissi K, Maunsell E, Diorio C (2015) Effect of physical activity on sex hormones in women: a systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res 17:139

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Wolf I, Sadetzki S, Catane R et al (2005) Diabetes mellitus and breast cancer. Lancet Oncol 6:103–111

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    De Pergola G, Silvestris F (2013) Obesity as a major risk factor for cancer. J Obes 2013:291546

    Google Scholar 

  25. 25.

    Gallagher EJ, LeRoith D (2013) Diabetes, antihyperglycemic medications and cancer risk: smoke or fire? Curr Opin Endocrinol Diabetes Obes 20:485–494

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Gunter MJ, Hoover DR, Yu H et al (2009) Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 101:48–60

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Goodwin PJ, Ennis M, Pritchard KI et al (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20:42–51

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Weroha SJ, Haluska P (2012) The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am 41:335–350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Key TJ, Appleby PN, Reeves GK et al (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol 11:530–542

    Article  PubMed  Google Scholar 

  30. 30.

    Kang DW, Lee J, Suh SH et al (2016) Effects of exercise on insulin, IGF-axis, adipocytokines, and inflammatory markers in breast cancer survivors: a systematic review and meta-analysis. Biomark Prev, Cancer Epidemiol. doi:10.1158/1055-9965.EPI-16-0602

    Google Scholar 

  31. 31.

    Lin X, Zhang X, Guo J et al (2015) Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 4(7):e002014

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bagley L, Slevin M, Bradburn S et al (2016) Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise. BMJ Open Sport Exerc Med 2:e000056

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Yalamanchi SV, Stewart KJ, Ji N et al (2016) The relationship of fasting hyperglycemia to changes in fat and muscle mass after exercise training in type 2 diabetes. Diabetes Res Clin Pract 122:154–161

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Fairey AS, Courneya KS, Field CJ et al (2003) Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol Biomark Prev 12:721–727

    CAS  Google Scholar 

  35. 35.

    Irwin ML, Varma K, Alvarez-Reeves M et al (2009) Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale exercise and survivorship study. Cancer Epidemiol Biomark Prev 18:306–313

    CAS  Article  Google Scholar 

  36. 36.

    Ligibel JA, Campbell N, Partridge A et al (2008) Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol 26:907–912

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:74–80

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Allin KH, Bojesen SE, Nordestgaard BG (2009) Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol 27:2217–2224

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Lee S, Choe JW, Kim HK et al (2011) High-sensitivity C-reactive protein and cancer. J Epidemiol 21:161–168

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Allin KH, Nordestgaard BG, Flyger H et al (2011) Elevated pre-treatment levels of plasma C-reactive protein are associated with poor prognosis after breast cancer: a cohort study. Breast Cancer Res 13:R55

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Pierce BL, Ballard-Barbash R, Bernstein L et al (2009) Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 27:3437–3444

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Ravishankaran P, Karunanithi R (2011) Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Fairey AS, Courneya KS, Field CJ et al (2005) Effect of exercise training on C-reactive protein in postmenopausal breast cancer survivors: a randomized controlled trial. Brain Behav Immun 19:381–388

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Friedenreich CM, Neilson HK, Woolcott CG et al (2012) Inflammatory marker changes in a yearlong randomized exercise intervention trial among postmenopausal women. Cancer Prev Res 5:98–108

    CAS  Article  Google Scholar 

  46. 46.

    Daray LA, Henagan TM, Zanovec M et al (2011) Endurance and resistance training lowers C-reactive protein in young, healthy females. Appl Physiol Nutr Metab 36:660–670

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Tomaszewski M, Charchar FJ, Przybycin M et al (2003) Strikingly low circulating CRP concentrations in ultramarathon runners independent of markers of adiposity: how low can you go? Arterioscler Thromb Vasc Biol 23:1640–1644

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Wanderley FA, Moreira A, Sokhatska O et al (2013) Differential responses of adiposity, inflammation and autonomic function to aerobic versus resistance training in older adults. Exp Gerontol 48:326–333

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Campbell PT, Campbell KL, Wener MH et al (2009) A yearlong exercise intervention decreases CRP among obese postmenopausal women. Med Sci Sports Exerc 41:1533–1539

    Article  PubMed  Google Scholar 

  50. 50.

    Mathur N, Pedersen BK (2008) Exercise as a mean to control low-grade systemic inflammation. Mediat Inflamm 2008:109502

    Article  Google Scholar 

  51. 51.

    Imayama I, Ulrich CM, Alfano CM et al (2012) Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res 72:2314–2326

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Payne JK, Held J, Thorpe J et al (2008) Effect of exercise on biomarkers, fatigue, sleep disturbances, and depressive symptoms in older women with breast cancer receiving hormonal therapy. Oncol Nurs Forum 35:635–642

    Article  PubMed  Google Scholar 

  53. 53.

    Rogers LQ, Fogleman A, Trammell R et al (2013) Effects of a physical activity behavior change intervention on inflammation and related health outcomes in breast cancer survivors: pilot randomized trial. Integr Cancer Ther 12:323–335

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Gomez AM, Martinez C, Fiuza-Luces C et al (2011) Exercise training and cytokines in breast cancer survivors. Int J Sports Med 32:461–467

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Guinan E, Hussey J, Broderick JM et al (2013) The effect of aerobic exercise on metabolic and inflammatory markers in breast cancer survivors–a pilot study. Support Care Cancer 21:1983–1992

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Kullo IJ, Khaleghi M, Hensrud DD (2007) Markers of inflammation are inversely associated with VO2 max in asymptomatic men. J Appl Physiol 102:1374–1379

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Balducci S, Zanuso S, Nicolucci A et al (2010) Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis 20:608–617

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Shanely RA, Nieman DC, Henson DA et al (2013) Inflammation and oxidative stress are lower in physically fit and active adults. Scand J Med Sci Sports 23:215–223

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Libardi CA, De Souza GV, Cavaglieri CR et al (2012) Effect of resistance, endurance, and concurrent training on TNF-alpha, IL-6, and CRP. Med Sci Sports Exerc 44:50–56

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Gannon NP, Vaughan RA, Garcia-Smith R et al (2015) Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer 136:E197–E202

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Hojman P, Dethlefsen C, Brandt C et al (2011) Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 301:E504–E510

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Aoi W, Naito Y, Takagi T et al (2013) A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62:882–889

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Pedersen L, Idorn M, Olofsson GH et al (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23:554–562

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Copeland JL, Consitt LA, Tremblay MS (2002) Hormonal responses to endurance and resistance exercise in females aged 19-69 years. J Gerontol A 57:B158–B165

    Article  Google Scholar 

  65. 65.

    Enea C, Boisseau N, Ottavy M et al (2009) Effects of menstrual cycle, oral contraception, and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Eur J Appl Physiol 106:365–373

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Bouassida A, Chatard JC, Chamari K et al (2009) Effect of energy expenditure and training status on leptin response to sub-maximal cycling. J Sports Sci Med 8:190–196

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Roupas ND, Mamali I, Maragkos S et al (2013) The effect of prolonged aerobic exercise on serum adipokine levels during an ultra-marathon endurance race. Hormones 12:275–282 (Athens)

    Article  PubMed  Google Scholar 

  68. 68.

    Soria M, Anson M, Escanero JF (2016) Correlation analysis of exercise-induced changes in plasma trace element and hormone levels during incremental exercise in well-trained athletes. Biol Trace Elem Res 170:55–64

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Antonelli G, Gatti R, Prearo M et al (2009) Salivary free insulin-like growth factor-i levels: effects of an acute physical exercise in athletes. J Endocrinol Investig 32:1–5

    CAS  Article  Google Scholar 

  70. 70.

    Jurimae J, Jurimae T, Purge P (2007) Plasma ghrelin is altered after maximal exercise in elite male rowers. Exp Biol Med 232:904–909

    CAS  Google Scholar 

  71. 71.

    Elias AN, Pandian MR, Wang L et al (2000) Leptin and IGF-I levels in unconditioned male volunteers after short-term exercise. Psychoneuroendocrinology 25:453–461

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Mendham AE, Duffield R, Marino F et al (2015) Differences in the acute inflammatory and glucose regulatory responses between small-sided games and cycling in sedentary, middle-aged men. J Sci Med Sport 18:714–719

    Article  PubMed  Google Scholar 

  74. 74.

    Ostrowski K, Rohde T, Asp S et al (1999) Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515(1):287–291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Pedersen BK, Steensberg A, Fischer C et al (2001) Exercise and cytokines with particular focus on muscle-derived IL-6. Exerc Immunol Rev 7:18–31

    CAS  PubMed  Google Scholar 

  76. 76.

    Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33

    PubMed  Google Scholar 

  77. 77.

    Catoire M, Kersten S (2015) The search for exercise factors in humans. FASEB J 29:1615–1628

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Zouhal H, Jacob C, Delamarche P et al (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38:401–423

    Article  PubMed  Google Scholar 

  79. 79.

    Numao S, Katayama Y, Hayashi Y et al (2011) Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men. Metabolism 60:186–194

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    CAS  PubMed  Google Scholar 

  81. 81.

    Robson PJ, Blannin AK, Walsh NP et al (1999) Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sports Med 20:128–135

    CAS  PubMed  Google Scholar 

  82. 82.

    Perez Pinero C, Bruzzone A, Sarappa MG et al (2012) Involvement of alpha2- and beta2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol 166:721–736

    Article  Google Scholar 

  83. 83.

    Lillberg K, Verkasalo PK, Kaprio J et al (2003) Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol 157:415–423

    Article  PubMed  Google Scholar 

  84. 84.

    Raimondi S, Botteri E, Munzone E et al (2016) Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: systematic review and meta-analysis. Int J Cancer 139:212–219

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Kumar V, Patel S, Tcyganov E et al (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Condamine T, Ramachandran I, Youn JI et al (2015) Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 66:97–110

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Holmes MD, Chen WY, Feskanich D et al (2005) Physical activity and survival after breast cancer diagnosis. JAMA 293:2479–2486

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Brown JC, Winters-Stone K, Lee A et al (2012) Cancer, physical activity, and exercise. Compr Physiol 2:2775–2809

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Lewis GD, Farrell L, Wood MJ et al (2010) Metabolic signatures of exercise in human plasma. Sci Transl Med 2:33ra37

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12:504–517

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Fruhbeis C, Helmig S, Tug S et al (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J. Extracell Vesicles 4:28239

    Article  PubMed  Google Scholar 

  94. 94.

    Polakovicova M, Musil P, Laczo E et al (2016) Circulating microRNAs as potential biomarkers of exercise response. Int J Mol Sci 17(10):1553

    Article  PubMed Central  Google Scholar 

  95. 95.

    Nielsen S, Akerstrom T, Rinnov A et al (2014) The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS ONE 9:e87308

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Danish Cancer Society and the Danish Cancer Research Foundation. The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. During the study period, the Centre of Inflammation and Metabolism (CIM) was supported by a grant from the Danish National Research Foundation (DNRF55). CIM/CFAS is a member of DD2—the Danish Center for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research, Grant Nos. 09-067009 and 09-075724).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pernille Hojman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 207 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dethlefsen, C., Pedersen, K.S. & Hojman, P. Every exercise bout matters: linking systemic exercise responses to breast cancer control. Breast Cancer Res Treat 162, 399–408 (2017). https://doi.org/10.1007/s10549-017-4129-4

Download citation

Keywords

  • Breast cancer
  • Acute exercise
  • Chronic training
  • Systemic factors