Skip to main content

Advertisement

Log in

Revisiting breast cancer patients who previously tested negative for BRCA mutations using a 12-gene panel

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

BRCA mutations contribute to about 20% of all hereditary breast cancers. With full-genome sequencing as the emerging standard for genetic testing, other breast cancer susceptibility genes have been identified and may collectively contribute to up to 30% of all hereditary breast cancers. We re-assessed women who had previously tested negative for a BRCA mutation when outdated techniques were used, and discuss the implications of identifying a mutation several years after initial genetic testing.

Methods

We evaluated the prevalence of mutations in 12 breast cancer susceptibility genes (including BRCA1 and BRCA2) in 190 breast cancer patients with a strong family history of breast cancer. These women had previously tested negative for mutations in the large coding exons of BRCA1 and BRCA2 using the protein truncation test (PTT) between the years of 1996 and 2013.

Results

We identified pathogenic mutations in 17 of 190 (9%) women. Six mutations were detected in BRCA1 (n = 2) and BRCA2 (n = 4). Eleven mutations were found in other breast cancer susceptibility genes including CHEK2 (n = 5), PALB2 (n = 2), BLM (n = 2), ATM (n = 1) and TP53 (n = 1).

Conclusion

Among 190 breast cancer patients with a family history of the disease, and who previously received a negative result for BRCA mutations using the PTT, 17 (9%) women were found to carry a high-risk pathogenic mutation in a breast cancer susceptibility gene. Six of these women were BRCA mutation carriers who were missed previously. These findings support the rationale for updated genetic testing in patients who tested BRCA mutation negative using outdated techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9):665–676. doi:10.1038/nrc1431

    Article  CAS  PubMed  Google Scholar 

  2. Claus EB, Risch N, Thompson WD (1991) Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet 48(2):232–242

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Easton D, Peto J (1990) The contribution of inherited predisposition to cancer incidence. Cancer Surv 9(3):395–416

    CAS  PubMed  Google Scholar 

  4. Easton DF (1999) How many more breast cancer predisposition genes are there? Breast Cancer Res 1(1):14–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62(3):676–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, Tang J, Li S, Zhang S, Shaw PA, Narod SA (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98(23):1694–1706. doi:10.1093/jnci/djj465

    Article  CAS  PubMed  Google Scholar 

  7. Shih HA, Couch FJ, Nathanson KL, Blackwood MA, Rebbeck TR, Armstrong KA, Calzone K, Stopfer J, Seal S, Stratton MR, Weber BL (2002) BRCA1 and BRCA2 mutation frequency in women evaluated in a breast cancer risk evaluation clinic. J Clin Oncol 20(4):994–999

    Article  CAS  PubMed  Google Scholar 

  8. Goldgar DE, Healey S, Dowty JG, Da Silva L, Chen X, Spurdle AB, Terry MB, Daly MJ, Buys SM, Southey MC, Andrulis I, John EM, Khanna KK, Hopper JL, Oefner PJ, Lakhani S, Chenevix-Trench G (2011) Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 13(4):R73. doi:10.1186/bcr2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ratajska M, Antoszewska E, Piskorz A, Brozek I, Borg A, Kusmierek H, Biernat W, Limon J (2012) Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res Treat 131(1):89–97. doi:10.1007/s10549-011-1403-8

    Article  CAS  PubMed  Google Scholar 

  10. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Easton DF, Stratton MR, Rahman N (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241. doi:10.1038/ng1902

    Article  CAS  PubMed  Google Scholar 

  11. Benusiglio PR, Malka D, Rouleau E, De Pauw A, Buecher B, Nogues C, Fourme E, Colas C, Coulet F, Warcoin M, Grandjouan S, Sezeur A, Laurent-Puig P, Moliere D, Tlemsani C, Di Maria M, Byrde V, Delaloge S, Blayau M, Caron O (2013) CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet 50(7):486–489. doi:10.1136/jmedgenet-2012-101472

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Zhang F, Wang Y, Liu SC (2012) CHEK2 1100delC variant and breast cancer risk in Caucasians: a meta-analysis based on 25 studies with 29,154 cases and 37,064 controls. Asian Pac J Cancer Prev 13(7):3501–3505

    Article  PubMed  Google Scholar 

  13. Foulkes WD, Ghadirian P, Akbari MR, Hamel N, Giroux S, Sabbaghian N, Darnel A, Royer R, Poll A, Fafard E, Robidoux A, Martin G, Bismar TA, Tischkowitz M, Rousseau F, Narod SA (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French-Canadian women. Breast Cancer Res 9(6):R83. doi:10.1186/bcr1828

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, Rodrigues DN, Renwick A, Seal S, Ramsay E, Duarte Sdel V, Rivas MA, Warren-Perry M, Zachariou A, Campion-Flora A, Hanks S, Murray A, Ansari Pour N, Douglas J, Gregory L, Rimmer A, Walker NM, Yang TP, Adlard JW, Barwell J, Berg J, Brady AF, Brewer C, Brice G, Chapman C, Cook J, Davidson R, Donaldson A, Douglas F, Eccles D, Evans DG, Greenhalgh L, Henderson A, Izatt L, Kumar A, Lalloo F, Miedzybrodzka Z, Morrison PJ, Paterson J, Porteous M, Rogers MT, Shanley S, Walker L, Gore M, Houlston R, Brown MA, Caufield MJ, Deloukas P, McCarthy MI, Todd JA, Turnbull C, Reis-Filho JS, Ashworth A, Antoniou AC, Lord CJ, Donnelly P, Rahman N (2013) Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493(7432):406–410. doi:10.1038/nature11725

    Article  CAS  PubMed  Google Scholar 

  15. Jiang L, Zhang C, Li Y, Yu X, Zheng J, Zou P, Bin X, Lu J, Zhou Y (2011) A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population. Breast Cancer Res Treat 126(2):487–495. doi:10.1007/s10549-010-1094-6

    Article  CAS  PubMed  Google Scholar 

  16. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, Roeb W, Agnew KJ, Stray SM, Wickramanayake A, Norquist B, Pennington KP, Garcia RL, King MC, Swisher EM (2011) Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA 108(44):18032–18037. doi:10.1073/pnas.1115052108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanka C, Brozek I, Skalska B, Siemiatkowska A, Limon J (2007) Germline NBS1 mutations in families with aggregation of Breast and/or ovarian cancer from north-east Poland. Anticancer Res 27(4C):3015–3018

    CAS  PubMed  Google Scholar 

  18. Blanco A, Grana B, Fachal L, Santamarina M, Cameselle-Teijeiro J, Ruiz-Ponte C, Carracedo A, Vega A (2010) Beyond BRCA1 and BRCA2 wild-type breast and/or ovarian cancer families: germline mutations in TP53 and PTEN. Clin Genet 77(2):193–196. doi:10.1111/j.1399-0004.2009.01309.x

    Article  CAS  PubMed  Google Scholar 

  19. Heikkinen K, Karppinen SM, Soini Y, Makinen M, Winqvist R (2003) Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibility. J Med Genet 40(12):e131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guenard F, Pedneault CS, Ouellette G, Labrie Y, Simard J, Durocher F (2010) Evaluation of the contribution of the three breast cancer susceptibility genes CHEK2, STK11, and PALB2 in non-BRCA1/2 French Canadian families with high risk of breast cancer. Genetic testing and molecular biomarkers 14(4):515–526. doi:10.1089/gtmb.2010.0027

    Article  CAS  PubMed  Google Scholar 

  21. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, Neuhausen SL, John EM, Andrulis IL, Terry MB, Daly M, Buys S, Le Calvez-Kelm F, Lonie A, Pope BJ, Tsimiklis H, Voegele C, Hilbers FM, Hoogerbrugge N, Barroso A, Osorio A, Giles GG, Devilee P, Benitez J, Hopper JL, Tavtigian SV, Goldgar DE, Southey MC (2012) Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet 90(4):734–739. doi:10.1016/j.ajhg.2012.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pal T, Akbari MR, Sun P, Lee JH, Fulp J, Thompson Z, Coppola D, Nicosia S, Sellers TA, McLaughlin J, Risch HA, Rosen B, Shaw P, Schildkraut J, Narod SA (2012) Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br J Cancer 107(10):1783–1790. doi:10.1038/bjc.2012.452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Metcalfe KA, Finch A, Poll A, Horsman D, Kim-Sing C, Scott J, Royer R, Sun P, Narod SA (2009) Breast cancer risks in women with a family history of breast or ovarian cancer who have tested negative for a BRCA1 or BRCA2 mutation. Br J Cancer 100(2):421–425. doi:10.1038/sj.bjc.6604830

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Picard. http://broadinstitute.github.io/picard/. Accessed 2 Aug 2016

  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. doi:10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, Devilee P, Meindl A, Couch FJ, Southey M, Goldgar DE, Evans DG, Chenevix-Trench G, Rahman N, Robson M, Domchek SM, Foulkes WD (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372(23):2243–2257. doi:10.1056/NEJMsr1501341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#breast_risk. Accessed 20 June 2016

  29. Scherr CL, Lindor NM, Malo TL, Couch FJ, Vadaparampil ST (2015) Genetic counselors’ practices and confidence regarding variant of uncertain significance results and reclassification from BRCA testing. Clin Genet 88(6):523–529. doi:10.1111/cge.12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aloraifi F, Boland MR, Green AJ, Geraghty JG (2015) Gene analysis techniques and susceptibility gene discovery in non-BRCA1/BRCA2 familial breast cancer. Surg Oncol 24(2):100–109. doi:10.1016/j.suronc.2015.04.003

    Article  PubMed  Google Scholar 

  31. Schlegelberger B, Kreipe H, Lehmann U, Steinemann D, Ripperger T, Gohring G, Thomay K, Rump A, Di Donato N, Suttorp M (2015) A child with Li-Fraumeni syndrome: modes to inactivate the second allele of TP53 in three different malignancies. Pediatr Blood Cancer 62(8):1481–1484. doi:10.1002/pbc.25486

    Article  PubMed  Google Scholar 

  32. Economopoulou P, Dimitriadis G, Psyrri A (2015) Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev 41(1):1–8. doi:10.1016/j.ctrv.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  33. Papi L, Putignano AL, Congregati C, Piaceri I, Zanna I, Sera F, Morrone D, Genuardi M, Palli D (2010) A PALB2 germline mutation associated with hereditary breast cancer in Italy. Fam Cancer 9(2):181–185. doi:10.1007/s10689-009-9295-z

    Article  CAS  PubMed  Google Scholar 

  34. Shaag A, Walsh T, Renbaum P, Kirchhoff T, Nafa K, Shiovitz S, Mandell JB, Welcsh P, Lee MK, Ellis N, Offit K, Levy-Lahad E, King MC (2005) Functional and genomic approaches reveal an ancient CHEK2 allele associated with breast cancer in the Ashkenazi Jewish population. Hum Mol Genet 14(4):555–563. doi:10.1093/hmg/ddi052

    Article  CAS  PubMed  Google Scholar 

  35. Bernstein JL, Teraoka S, Southey MC, Jenkins MA, Andrulis IL, Knight JA, John EM, Lapinski R, Wolitzer AL, Whittemore AS, West D, Seminara D, Olson ER, Spurdle AB, Chenevix-Trench G, Giles GG, Hopper JL, Concannon P (2006) Population-based estimates of breast cancer risks associated with ATM gene variants c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the Breast Cancer Family Registry. Hum Mutat 27(11):1122–1128. doi:10.1002/humu.20415

    Article  CAS  PubMed  Google Scholar 

  36. van Os NJ, Roeleveld N, Weemaes CM, Jongmans MC, Janssens GO, Taylor AM, Hoogerbrugge N, Willemsen MA (2015) Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. doi:10.1111/cge.12710

    Google Scholar 

  37. Arora H, Chacon AH, Choudhary S, McLeod MP, Meshkov L, Nouri K, Izakovic J (2014) Bloom syndrome. Int J Dermatol 53(7):798–802. doi:10.1111/ijd.12408

    Article  CAS  PubMed  Google Scholar 

  38. Prokofyeva D, Bogdanova N, Dubrowinskaja N, Bermisheva M, Takhirova Z, Antonenkova N, Turmanov N, Datsyuk I, Gantsev S, Christiansen H, Park-Simon TW, Hillemanns P, Khusnutdinova E, Dork T (2013) Nonsense mutation p. Q548X in BLM, the gene mutated in Bloom’s syndrome, is associated with breast cancer in Slavic populations. Breast Cancer Res Treat 137(2):533–539. doi:10.1007/s10549-012-2357-1

    Article  CAS  PubMed  Google Scholar 

  39. Sokolenko AP, Bogdanova N, Kluzniak W, Preobrazhenskaya EV, Kuligina ES, Iyevleva AG, Aleksakhina SN, Mitiushkina NV, Gorodnova TV, Bessonov AA, Togo AV, Lubinski J, Cybulski C, Jakubowska A, Dork T, Imyanitov EN (2014) Double heterozygotes among breast cancer patients analyzed for BRCA1, CHEK2, ATM, NBN/NBS1, and BLM germ-line mutations. Breast Cancer Res Treat 145(2):553–562. doi:10.1007/s10549-014-2971-1

    Article  CAS  PubMed  Google Scholar 

  40. Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DY, Tothill RW, Thorne H, Barnes DR, Li J, Ellul J, Philip GK, Antill YC, James PA, Trainer AH, Mitchell G, Campbell IG (2012) Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet 8(9):e1002894. doi:10.1371/journal.pgen.1002894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Joanne Kotsopoulos is the recipient of a Cancer Care Ontario Research Chair in Population Studies and a Canadian Cancer Society Career Development Award in Prevention. Steven Narod is the recipient of a Canada Research Chair tier I. Olivia Moran is the recipient of the Enid Walker Graduate Student Award in Women’s Health Research and the Canadian Graduate Scholarship—Master’s award from the Canadian Institutes of Health Research. This study was funded by the Canadian Breast Cancer Foundation—Ontario Chapter Research Project Grant. The authors thank Chantelle Vernon, Nikita Rao, Tracy Graham, Stephanie Hurst, Kathleen Bell, Jeanna McCuaig, Yael Ogniewicz, Sonia Nanda, Spring Holter, Dawn Lee and Nicole Gojska for their help with participant recruitment and interpretation of the findings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Kotsopoulos.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

The experiments described comply with the current laws of the country in which they were performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, O., Nikitina, D., Royer, R. et al. Revisiting breast cancer patients who previously tested negative for BRCA mutations using a 12-gene panel. Breast Cancer Res Treat 161, 135–142 (2017). https://doi.org/10.1007/s10549-016-4038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-4038-y

Keywords

Navigation