Time to incorporate germline multigene panel testing into breast and ovarian cancer patient care

Abstract

Purpose

Genetic evaluation is increasingly becoming an integral part of the management of women with newly diagnosed breast and ovarian cancer (OC), and of individuals at high risk for these diseases. Genetic counseling and testing have been incorporated into oncological care to help and complete management and treatment strategies. Risk assessment and early detection strategies in individuals with BRCA1/2 mutations and with Lynch syndrome have been quite extensively studied, whereas much less is known about the management of mutation carriers with less common high-penetrance cancer susceptibility genes (PTEN, TP53, STK11, CDH1), and particularly those who carry mutations in moderate-penetrance genes (e.g., PALB2, CHEK2, ATM, NF1, RAD51C, RAD51D, BRIP1).

Methods

The latter patient groups represent important ongoing research opportunities to enable informed counseling about appropriate clinical management.

Conclusion

We summarize the current guidelines for the management of high and moderate-penetrance mutations for breast and OC susceptibility. Continuous updating of guidelines for proper clinical management of these individuals is ongoing because of rapid advances in technology and knowledge in this field. Thus, we exhort the use of multigene panels for the assessment of cancer risk beyond the classic predisposition syndromes as a new standard of care in cancer genetics. We further support an increase of genetic counselors in Europe and use of their expertise to support genetic testing in specialist multidisciplinary teams.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Claus EB et al (1996) The genetic attributable risk of breast and ovarian cancer. Cancer 77(11):2318–2324

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Foulkes WD (2008) Inherited susceptibility to common cancers. N Engl J Med 359(20):2143–2153

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40(1):17–22

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ford D et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The breast cancer linkage consortium. Am J Hum Genet 62(3):676–689

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Walsh T et al (2011) Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA 108(44):18032–18037

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Janavicius R (2010) Founder BRCA1/2 mutations in the Europe: implications for hereditary breast-ovarian cancer prevention and control. EPMA J 1(3):397–412

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Roa BB et al (1996) Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 14(2):185–187

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Lakhani SR et al (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20(9):2310–2318

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mavaddat N et al (2012) Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21(1):134–147

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Mavaddat N et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105(11):812–822

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Medeiros F et al (2006) The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol 30(2):230–236

    PubMed  Article  Google Scholar 

  12. 12.

    Finch A et al (2006) Clinical and pathologic findings of prophylactic salpingo-oophorectomies in 159 BRCA1 and BRCA2 carriers. Gynecol Oncol 100(1):58–64

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Evans DG et al (2010) Risk of breast cancer in male BRCA2 carriers. J Med Genet 47(10):710–711

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Edwards SM et al (2010) Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer 103(6):918–924

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Carnevale J, Ashworth A (2015) Assessing the significance of BRCA1 and BRCA2 mutations in pancreatic cancer. J Clin Oncol 33(28):3080–3081

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Petersen GM, Hruban RH (2003) Familial pancreatic cancer: where are we in 2003? J Natl Cancer Inst 95(3):180–181

    PubMed  Article  Google Scholar 

  17. 17.

    Hearle N et al (2003) Contribution of germline mutations in BRCA2, P16(INK4A), P14(ARF) and P15 to uveal melanoma. Invest Ophthalmol Vis Sci 44(2):458–462

    PubMed  Article  Google Scholar 

  18. 18.

    Shu CA et al (2016) Uterine cancer after risk-reducing salpingo-oophorectomy without hysterectomy in women with BRCA mutations. JAMA Oncol. doi:10.1001/jamaoncol.2016.1820

    PubMed  Google Scholar 

  19. 19.

    Network NCCN: Genetic/familial high risk assessment: breast and ovarian- v. 2.2016, NCCN Clinical Practice guidelines in Oncology.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Le-Petross HT et al (2011) Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer. Cancer 117(17):3900–3907

    PubMed  Article  Google Scholar 

  21. 21.

    Piper M et al (2013) Total skin-sparing mastectomy: a systematic review of oncologic outcomes and postoperative complications. Ann Plast Surg 70(4):435–437

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Hartmann LC, Lindor NM (2016) The role of risk-reducing surgery in hereditary breast and ovarian cancer. N Engl J Med 374(5):454–468

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Canto MI et al (2013) International cancer of the pancreas screening (caps) consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 62(3):339–347

    PubMed  Article  Google Scholar 

  24. 24.

    Canto MI et al (2012) Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 142(4):796–804 quiz e14–5

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Cuzick J et al (2007) Long-term results of tamoxifen prophylaxis for breast cancer—96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99(4):272–282

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Fisher B et al (2005) Tamoxifen for the prevention of breast cancer: current status of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst 97(22):1652–1662

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Vogel VG et al (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP study of tamoxifen and raloxifene (STAR) P-2 trial. JAMA 295(23):2727–2741

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Phillips KA et al (2013) Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol 31(25):3091–3099

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Decensi A et al (2007) Randomized dose-ranging trial of tamoxifen at low doses in hormone replacement therapy users. J Clin Oncol 25(27):4201–4209

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Guerrieri-Gonzaga A et al (2013) Effect of low-dose tamoxifen after surgical excision of ductal intraepithelial neoplasia: results of a large retrospective monoinstitutional cohort study. Ann Oncol 24(7):1859–1866

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Goss PE et al (2011) Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364(25):2381–2391

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Iodice S et al (2010) Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer 46(12):2275–2284

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Moorman PG et al (2013) Oral contraceptives and risk of ovarian cancer and breast cancer among high-risk women: a systematic review and meta-analysis. J Clin Oncol 31(33):4188–4198

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Burn J et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378(9809):2081–2087

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Thorlacius S et al (1997) Study of a single BRCA2 mutation with high carrier frequency in a small population. Am J Hum Genet 60(5):1079–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Friedman LS et al (1997) Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population. Am J Hum Genet 60(2):313–319

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Survillance, Epidemiology, End Results Program. SEER, based on 2010–2012 data. http://seer.cancer.gov

  38. 38.

    Risch HA et al (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98(23):1694–1706

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Schneider K et al (1993) Li-Fraumeni syndrome. In: Pagon RA et al (eds) GeneReviews(R). University of Washington, Seattle

    Google Scholar 

  40. 40.

    Tan MH et al (2012) Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18(2):400–407

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    van Lier MG et al (2010) High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105(6):1258–1264 author reply 1265

    PubMed  Article  Google Scholar 

  42. 42.

    Hansford S et al (2015) Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 1(1):23–32

    PubMed  Article  Google Scholar 

  43. 43.

    Stoffel E et al (2009) Calculation of risk of colorectal and endometrial cancer among patients with Lynch syndrome. Gastroenterology 137(5):1621–1627

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Win AK et al (2012) Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol 30(9):958–964

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Watson P et al (2008) The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer 123(2):444–449

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Engel C et al (2012) Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol 30(35):4409–4415

    PubMed  Article  Google Scholar 

  47. 47.

    Kastrinos F et al (2009) Risk of pancreatic cancer in families with Lynch syndrome. JAMA 302(16):1790–1795

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348(10):919–932

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Antoniou AC et al (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Weischer M et al (2008) CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol 26(4):542–548

    PubMed  Article  Google Scholar 

  51. 51.

    Song H et al (2015) Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol 33:2901–2907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Goldgar DE et al (2011) Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 13(4):R73

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Rafnar T et al (2011) Mutations in <Emphasis Type="Italic">BRIP1</Emphasis> confer high risk of ovarian cancer. Nat Genet 43(11):1104–1107

  54. 54.

    Uusitalo E et al (2016) Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol 34(17):1978–1986

    PubMed  Article  Google Scholar 

  55. 55.

    Pritchard CC et al (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 375:443–453

    PubMed  Article  Google Scholar 

  56. 56.

    Silver DP et al (2010) Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 28(7):1145–1153

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Byrski T et al (2014) Pathologic complete response to neoadjuvant cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat 147(2):401–405

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Tutt A et al (2014) The TNT trial. 2014 San Antonio Breast Cancer Symposium. Abstract S3-01, Presented 11, 2014

  59. 59.

    Ledermann J et al (2014) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15(8):852–861

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Vinayak S, Ford JM (2010) PARP inhibitors for the treatment and prevention of breast cancer. Curr Breast Cancer Rep 2(4):190–197

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Mateo J et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Kaufman B et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33(3):244–250

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Burgess M, Puhalla S (2014) BRCA 1/2-mutation related and sporadic breast and ovarian cancers: more alike than different. Front Oncol 4:19

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wiggans AJ et al (2015) Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev 5:CD007929

    Google Scholar 

  65. 65.

    Fong PC et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361(2):123–134

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Thompson ER et al (2016) Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol 34(13):1455–1459

    PubMed  Article  Google Scholar 

  67. 67.

    Yurgelun MB et al (2015) Identification of a variety of mutations in cancer predisposition genes in patients with suspected lynch syndrome. Gastroenterology 149(3):604–613.e20

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Tung N et al (2016) Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 34(13):1460–1468

    PubMed  Article  Google Scholar 

  69. 69.

    Tung N et al (2015) Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 121(1):25–33

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Desmond A et al (2015) Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol 1(7):943–951

    PubMed  Article  Google Scholar 

  71. 71.

    Castera L et al (2014) Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet 22(11):1305–1313

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  CAS  Google Scholar 

  73. 73.

    https://connect.patientcrossroads.org/?org=prompt. Accessed on 18 March 2015

  74. 74.

    Eng C (1993) PTEN hamartoma tumor syndrome (PHTS). In: Pagon RA et al (eds) GeneReviews(R). University of Washington, Seattle

    Google Scholar 

  75. 75.

    McGarrity TJ et al (1993) Peutz-Jeghers syndrome. In: Pagon RA et al (eds) GeneReviews(R). University of Washington, Seattle

    Google Scholar 

  76. 76.

    Win AK et al (2012) Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst 104(18):1363–1372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Nichols KE et al (2001) Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev 10(2):83–87

    CAS  PubMed  Google Scholar 

  78. 78.

    Gonzalez KD et al (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250–1256

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    McCuaig JM et al (2012) Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer 11(4):607–613

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Melhem-Bertrandt A et al (2012) Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 118(4):908–913

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Giacomazzi J et al (2013) Li-Fraumeni and Li-Fraumeni-like syndrome among children diagnosed with pediatric cancer in Southern Brazil. Cancer 119(24):4341–4349

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Schulz E et al (2012) Germline mutations in the DNA damage response genes BRCA1, BRCA2, BARD1 and TP53 in patients with therapy related myeloid neoplasms. J Med Genet 49(7):422–428

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Fitzgerald RC et al (2010) Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 47(7):436–444

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Lynch HT et al (2008) Hereditary diffuse gastric cancer: diagnosis, genetic counseling, and prophylactic total gastrectomy. Cancer 112(12):2655–2663

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Seevaratnam R et al (2012) A systematic review of the indications for genetic testing and prophylactic gastrectomy among patients with hereditary diffuse gastric cancer. Gastric Cancer 15(Suppl 1):S153–S163

    PubMed  Article  Google Scholar 

  86. 86.

    Li J et al (2013) Laparoscopic prophylactic total gastrectomy with linear stapler side-to-side esophagojejunal anastomosis for hereditary diffuse gastric cancer syndrome in 2 siblings. Surg Laparosc Endosc Percutaneous Tech 23(3):e124–e126

    Article  Google Scholar 

  87. 87.

    Kaurah P et al (2010) Pregnancy after prophylactic total gastrectomy. Fam Cancer 9(3):331–334

    PubMed  Article  Google Scholar 

  88. 88.

    Dreyer L, Jacyk WK, du Plessis DJ (1994) Bilateral large-cell calcifying Sertoli cell tumor of the testes with Peutz–Jeghers syndrome: a case report. Pediatr Dermatol 11(4):335–337

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Giardiello FM et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Dis Colon Rectum 57(8):1025–1048

    PubMed  Article  Google Scholar 

  90. 90.

    Syngal S et al (2015) ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol 110(2):223–262 quiz 263

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Giardiello FM et al (2014) Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Am J Gastroenterol 109(8):1159–1179

    PubMed  Article  Google Scholar 

  92. 92.

    Vasen HF et al (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62(6):812–823

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    South CD et al (2008) The frequency of Muir–Torre syndrome among Lynch syndrome families. J Natl Cancer Inst 100(4):277–281

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Balmana J et al (2013) Familial risk-colorectal cancer: ESMO clinical practice guidelines. Ann Oncol 24(Suppl 6):vi73–vi80

    PubMed  Article  Google Scholar 

  95. 95.

    Stoffel EM et al (2015) Hereditary colorectal cancer syndromes: American society of clinical oncology clinical practice guideline endorsement of the familial risk-colorectal cancer: European society for medical oncology clinical practice guidelines. J Clin Oncol 33(2):209–217

    PubMed  Article  Google Scholar 

  96. 96.

    Ngeow J, Sesock K, Eng C (2015) Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. doi:10.1007/s10549-015-3665-z

    PubMed  Google Scholar 

  97. 97.

    Starink TM et al (1986) The Cowden syndrome: a clinical and genetic study in 21 patients. Clin Genet 29(3):222–233

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Eng C et al (2001) PTEN mutations and proteus syndrome. Lancet 358(9298):2079–2080

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Ngeow J et al (2014) Second malignant neoplasms in patients with Cowden syndrome with underlying germline PTEN mutations. J Clin Oncol 32(17):1818–1824

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Choi HS et al (2000) Clinical characteristics of Peutz-Jeghers syndrome in Korean polyposis patients. Int J Colorectal Dis 15(1):35–38

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Amos CI et al (2004) Genotype-phenotype correlations in Peutz–Jeghers syndrome. J Med Genet 41(5):327–333

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    van Lier MG et al (2011) High cancer risk and increased mortality in patients with Peutz–Jeghers syndrome. Gut 60(2):141–147

    PubMed  Article  Google Scholar 

  103. 103.

    Srivatsa PJ, Keeney GL, Podratz KC (1994) Disseminated cervical adenoma malignum and bilateral ovarian sex cord tumors with annular tubules associated with Peutz–Jeghers syndrome. Gynecol Oncol 53(2):256–264

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    van Lier MG et al (2011) High cumulative risk of intussusception in patients with Peutz–Jeghers syndrome: time to update surveillance guidelines? Am J Gastroenterol 106(5):940–945

    PubMed  Article  Google Scholar 

  105. 105.

    Wilson DM et al (1986) Testicular tumors with Peutz–Jeghers syndrome. Cancer 57(11):2238–2240

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Beggs AD et al (2010) Peutz–Jeghers syndrome: a systematic review and recommendations for management. Gut 59(7):975–986

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Umar A et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Pinol V et al (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA 293(16):1986–1994

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Easton DF et al (2015) Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 372(23):2243–2257

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Sy SM et al (2009) PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem 284(27):18302–18310

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Tischkowitz M, Xia B (2010) PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res 70(19):7353–7359

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Renwick A et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Blanco A et al (2012) Detection of a large rearrangement in PALB2 in Spanish breast cancer families with male breast cancer. Breast Cancer Res Treat 132(1):307–315

    PubMed  Article  Google Scholar 

  114. 114.

    Tischkowitz MD et al (2009) Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137(3):1183–1186

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Cybulski C et al (2011) Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29(28):3747–3752

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Cybulski C et al (2007) Germline CHEK2 mutations and colorectal cancer risk: different effects of a missense and truncating mutations? Eur J Hum Genet 15(2):237–241

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Pommier Y et al (2005) Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr Pharm Des 11(22):2855–2872

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Weischer M et al (2012) CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol 30(35):4308–4316

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Xiang HP et al (2011) Meta-analysis of CHEK2 1100delC variant and colorectal cancer susceptibility. Eur J Cancer 47(17):2546–2551

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Meijers-Heijboer H et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31(1):55–59

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Hale V, Weischer M, Park JY (2014) CHEK2 (*) 1100delC mutation and risk of prostate cancer. Prostate Cancer 2014:294575

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Cybulski C et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75(6):1131–1135

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Naslund-Koch C, Nordestgaard BG, Bojesen SE (2016) Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the copenhagen general population study. J Clin Oncol 34(11):1208–1216

    PubMed  Article  Google Scholar 

  124. 124.

    Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3(3):155–168

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Paglia LL et al (2010) ATM germline mutations in women with familial breast cancer and a relative with haematological malignancy. Breast Cancer Res Treat 119(2):443–452

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Swift M et al (1986) The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39(5):573–583

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Roberts NJ et al (2012) ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2(1):41–46

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Bernstein JL et al (2010) Radiation exposure, the ATM gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J Natl Cancer Inst 102(7):475–483

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Concannon P et al (2008) Variants in the ATM gene associated with a reduced risk of contralateral breast cancer. Cancer Res 68(16):6486–6491

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Shen MH, Harper PS, Upadhyaya M (1996) Molecular genetics of neurofibromatosis type 1 (NF1). J Med Genet 33(1):2–17

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Uusitalo E et al (2015) Incidence and mortality of neurofibromatosis: a total population study in Finland. J Invest Dermatol 135(3):904–906

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Sharif S et al (2007) Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J Med Genet 44(8):481–484

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    De Leeneer K et al (2012) Evaluation of RAD51C as cancer susceptibility gene in a large breast-ovarian cancer patient population referred for genetic testing. Breast Cancer Res Treat 133(1):393–398

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Sopik V, Akbari MR, Narod SA (2015) Genetic testing for RAD51C mutations: in the clinic and community. Clin Genet 88(4):303–312

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Levitus M et al (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J Nat Genet 37(9):934–935

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Easton DF et al (2016) No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J Med Genet 53:298–309

    PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Ramus SJ et al (2015) Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 107(11):djv214

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Liang J et al (2013) APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and metaanalysis. Am J Epidemiol 177:1169–1179

    PubMed  Article  Google Scholar 

  139. 139.

    Ma X et al (2014) Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut 63:326–336

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Armstrong J et al (2015) Utilization and outcomes of BRCA genetic testing and counseling in a national commercially insured population: the about study. JAMA Oncol 1(9):1251–1260

    PubMed  Article  Google Scholar 

  141. 141.

    Wideroff L et al (2005) Hereditary breast/ovarian and colorectal cancer genetics knowledge in a national sample of US physicians. J Med Genet 42(10):749–755

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Thompson ER et al (2012) Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet 8(9):e1002894

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Ellis NA, Offit K (2012) Heterozygous mutations in DNA repair genes and hereditary breast cancer: a question of power. PLoS Genet 8(9):e1003008

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Sermon K, Van Steirteghem A, Liebaers I (2004) Preimplantation genetic diagnosis. Lancet 363(9421):1633–1641

    PubMed  Article  Google Scholar 

  145. 145.

    Dewanwala A et al (2011) Attitudes toward childbearing and prenatal testing in individuals undergoing genetic testing for Lynch syndrome. Fam Cancer 10(3):549–556

    PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    National Society of Genetic Counselors’ Definition Task F et al (2006) A new definition of genetic counseling: national society of genetic counselors’ task force report. J Genet Couns 15(2):77–83

    Article  Google Scholar 

  147. 147.

    Skirton H et al (2015) The role of the genetic counsellor: a systematic review of research evidence. Eur J Hum Genet 23(4):452–458

    PubMed  Article  Google Scholar 

  148. 148.

    Pestoff R, Ingvoldstad C, Skirton H (2016) Genetic counsellors in Sweden: their role and added value in the clinical setting. Eur J Hum Genet 24(3):350–355

    PubMed  Article  Google Scholar 

  149. 149.

    Cordier C et al (2016) Genetic professionals’ views on genetic counsellors: a French survey. J Community Genet 7(1):51–55

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rossella Graffeo.

Ethics declarations

Conflicts of interest

The authors have declared no conflicts of interest.

Human and animal participants

The current manuscript is a review and does not contain any studies with human participants or animals performed by any of the authors, therefore there was no funding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Graffeo, R., Livraghi, L., Pagani, O. et al. Time to incorporate germline multigene panel testing into breast and ovarian cancer patient care. Breast Cancer Res Treat 160, 393–410 (2016). https://doi.org/10.1007/s10549-016-4003-9

Download citation

Keywords

  • Cancer genetic counseling
  • Breast and ovarian cancer
  • BRCA
  • Surveillance
  • Multiple-gene panel testing
  • Genetic counselors