Skip to main content

Advertisement

Log in

Validation of an oligo-gene signature for the prognostic stratification of ductal carcinoma in situ (DCIS)

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Current evidence suggests that the majority of DCIS lesions do not progress to invasive carcinoma, and overtreatment of DCIS is a significant problem. We previously reported an 8-gene signature that differentiated microdissected low-grade (LG) DCIS lesions with and without associated stromal invasion, based on differential DNA copy number changes detected by quantitative (q) PCR. The current study was undertaken to validate our candidate breast cancer invasion gene panel in a larger series of non-microdissected LG DCIS cases, and to investigate its potential utility in intermediate-grade (IG) and high-grade (HG) DCIS. Representative paraffin blocks were selected from 267 resected DCIS cases with 5–15 years of follow-up (139 pure DCIS [“PD”] and 128 mixed DCIS with associated invasion [“MD”]). These included 171 LG, 46 IG and 50 HG DCIS cases. Gene copy number changes were determined by qPCR, and their differential distribution in the PD and MD subgroups was evaluated. As an alternate platform, we employed immunohistochemistry (IHC). Novel IHC assays were developed for all eight candidate genes, and increased or reduced protein expression was manually scored. Separate multi-gene models were developed for qPCR and IHC to distinguish progressing and non-progressing DCIS lesions. By qPCR analysis, a panel of six genes, as well as CELSR1 alone (a potential invasion suppressor), differentiated PD and MD cases in LG and IG, but not in HG DCIS. By IHC, a panel of three genes, as well as GRAP2 alone (a potential invasion promoter), also distinguished PD and MD cases in LG and IG, but not in HG DCIS. The combination of CELSR1 (by qPCR) and GRAP2 (by IHC) had the best discriminatory power (p = 0.00004). Assays testing either or both of these genes have the potential to become important adjuncts for choosing appropriate treatment for LG/IG DCIS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49:751–758

    Article  CAS  PubMed  Google Scholar 

  2. Eusebi V, Feudale E, Foschini MP, Micheli A, Conti A, Riva C, Di Palma S, Rilke F (1994) Long-term follow-up of in situ carcinoma of the breast. Semin Diagn Pathol 11:223–235

    CAS  PubMed  Google Scholar 

  3. Badve S, A’Hern RP, Ward AM, Millis RR, Pinder SE, Ellis IO, Gusterson BA, Sloane JP (1998) Prediction of local recurrence of ductal carcinoma in situ of the breast using five histological classifications: a comparative study with long follow-up. Hum Pathol 29:915–923

    Article  CAS  PubMed  Google Scholar 

  4. Bellamy CO, McDonald C, Salter DM, Chetty U, Anderson TJ (1993) Noninvasive ductal carcinoma of the breast: the relevance of histologic categorization. Hum Pathol 24:16–23

    Article  CAS  PubMed  Google Scholar 

  5. Sanders ME, Schuyler PA, Simpson JF, Page DL, Dupont WD (2015) Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod Pathol 28:662–669. doi:10.1038/modpathol.2014.141

    Article  PubMed  Google Scholar 

  6. Nielsen M, Jensen J, Andersen J (1984) Precancerous and cancerous breast lesions during lifetime and at autopsy. A study of 83 women. Cancer 54:612–615

    Article  CAS  PubMed  Google Scholar 

  7. Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, Barry WT, Geradts J (2012) Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer 51:1067–1078. doi:10.1002/gcc.21991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silverstein MJ, Lagios MD, Craig PH, Waisman JR, Lewinsky BS, Colburn WJ, Poller DN (1996) A prognostic index for ductal carcinoma in situ of the breast. Cancer 77:2267–2274

    Article  CAS  PubMed  Google Scholar 

  9. Pawlak A, Strzadala L, Kalas W (2015) Non-genomic effects of the NR4A1/Nur77/TR3/NGFIB orphan nuclear receptor. Steroids 95:1–6. doi:10.1016/j.steroids.2014.12.020

    Article  CAS  PubMed  Google Scholar 

  10. Beard JA, Tenga A, Chen T (2015) The interplay of NR4A receptors and the oncogene-tumor suppressor networks in cancer. Cell Signal 27:257–266. doi:10.1016/j.cellsig.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  11. Li QX, Ke N, Sundaram R, Wong-Staal F (2006) NR4A1, 2, 3–an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 21:533–540

    CAS  PubMed  Google Scholar 

  12. Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, Conneely OM (2007) Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 13:730–735. doi:10.1038/nm1579

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Palmer C, Alenghat T, Li Y, Kao G, Lazar MA (2006) The corepressor silencing mediator for retinoid and thyroid hormone receptor facilitates cellular recovery from DNA double-strand breaks. Cancer Res 66:9316–9322. doi:10.1158/0008-5472.CAN-06-1902

    Article  CAS  PubMed  Google Scholar 

  14. Camacho CP, Latini FR, Oler G, Hojaij FC, Maciel RM, Riggins GJ, Cerutti JM (2009) Down-regulation of NR4A1 in follicular thyroid carcinomas is restored following lithium treatment. Clin Endocrinol (Oxf) 70:475–483. doi:10.1111/j.1365-2265.2008.03349.x

    Article  CAS  Google Scholar 

  15. Wenzl K, Troppan K, Neumeister P, Deutsch AJ (2015) The nuclear orphan receptor NR4A1 and NR4A3 as tumor suppressors in hematologic neoplasms. Curr Drug Targets 16:38–46

    Article  CAS  PubMed  Google Scholar 

  16. Alexopoulou AN, Leao M, Caballero OL, Da Silva L, Reid L, Lakhani SR, Simpson AJ, Marshall JF, Neville AM, Jat PS (2010) Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines. Breast Cancer Res 12:R51. doi:10.1186/bcr2610

    Article  PubMed  PubMed Central  Google Scholar 

  17. Muscat GE, Eriksson NA, Byth K, Loi S, Graham D, Jindal S, Davis MJ, Clyne C, Funder JW, Simpson ER, Ragan MA, Kuczek E, Fuller PJ, Tilley WD, Leedman PJ, Clarke CL (2013) Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol Endocrinol 27:350–365. doi:10.1210/me.2012-1265

    Article  CAS  PubMed  Google Scholar 

  18. Wanschers B, van de Vorstenbosch R, Wijers M, Wieringa B, King SM, Fransen J (2008) Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cell Motil Cytoskeleton 65:183–196. doi:10.1002/cm.20254

    Article  CAS  PubMed  Google Scholar 

  19. Jiang J, Yu L, Huang X, Chen X, Li D, Zhang Y, Tang L, Zhao S (2001) Identification of two novel human dynein light chain genes, DNLC2A and DNLC2B, and their expression changes in hepatocellular carcinoma tissues from 68 Chinese patients. Gene 281:103–113

    Article  CAS  PubMed  Google Scholar 

  20. Hadjantonakis AK, Sheward WJ, Harmar AJ, de Galan L, Hoovers JM, Little PF (1997) Celsr1, a neural-specific gene encoding an unusual seven-pass transmembrane receptor, maps to mouse chromosome 15 and human chromosome 22qter. Genomics 45:97–104. doi:10.1006/geno.1997.4892

    Article  CAS  PubMed  Google Scholar 

  21. Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, Copp AJ, Stanier P (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33:440–447. doi:10.1002/humu.21662

    Article  CAS  PubMed  Google Scholar 

  22. Wang XJ, Zhang DL, Xu ZG, Ma ML, Wang WB, Li LL, Han XL, Huo Y, Yu X, Sun JP (2014) Understanding cadherin EGF LAG seven-pass G-type receptors. J Neurochem 131:699–711. doi:10.1111/jnc.12955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ludwig L, Kessler H, Hoang-Vu C, Dralle H, Adler G, Boehm BO, Schmid RM (2003) Grap-2, a novel RET binding protein, is involved in RET mitogenic signaling. Oncogene 22:5362–5366. doi:10.1038/sj.onc.1206517

    Article  CAS  PubMed  Google Scholar 

  24. Ludwig L, Oswald F, Hoang-Vu C, Dralle H, Hildt E, Schmid RM, Karges W (2009) Expression of the Grb2-related RET adapter protein Grap-2 in human medullary thyroid carcinoma. Cancer Lett 275:194–197. doi:10.1016/j.canlet.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  25. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, Riethdorf L, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W (1999) Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 187:396–402

    Article  CAS  PubMed  Google Scholar 

  26. Moore E, Magee H, Coyne J, Gorey T, Dervan PA (1999) Widespread chromosomal abnormalities in high-grade ductal carcinoma in situ of the breast. Comparative genomic hybridization study of pure high-grade DCIS. J Pathol 187:403–409

    Article  CAS  PubMed  Google Scholar 

  27. Reis-Filho JS, Simpson PT, Gale T, Lakhani SR (2005) The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract 201:713–725. doi:10.1016/j.prp.2005.05.013

    Article  PubMed  Google Scholar 

  28. Ellsworth RE, Ellsworth DL, Love B, Patney HL, Hoffman LR, Kane J, Hooke JA, Shriver CD (2007) Correlation of levels and patterns of genomic instability with histological grading of DCIS. Ann Surg Oncol 14:3070–3077. doi:10.1245/s10434-007-9459-8

    Article  PubMed  Google Scholar 

  29. Pang JM, Gorringe KL, Wong SQ, Dobrovic A, Campbell IG, Fox SB (2015) Appraisal of the technologies and review of the genomic landscape of ductal carcinoma in situ of the breast. Breast Cancer Res 17:80. doi:10.1186/s13058-015-0586-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kerlikowske K, Molinaro AM, Gauthier ML, Berman HK, Waldman F, Bennington J, Sanchez H, Jimenez C, Stewart K, Chew K, Ljung BM, Tlsty TD (2010) Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst 102:627–637. doi:10.1093/jnci/djq101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, Cherbavaz DB, Shak S, Page DL, Sledge GW Jr, Davidson NE, Ingle JN, Perez EA, Wood WC, Sparano JA, Badve S (2013) A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst 105:701–710. doi:10.1093/jnci/djt067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by Susan G. Komen for the Cure research grant KG110514 (to JG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Geradts.

Ethics declarations

Conflict of interest

The lead author (JG) has been named an inventor on a patent application focusing on the 8-gene panel as a tool for the prognostic stratification of DCIS that is currently under review at the United States Patent Office. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geradts, J., Groth, J., Wu, Y. et al. Validation of an oligo-gene signature for the prognostic stratification of ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 157, 447–459 (2016). https://doi.org/10.1007/s10549-016-3838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3838-4

Keywords

Navigation