Breast Cancer Research and Treatment

, Volume 157, Issue 2, pp 217–228 | Cite as

Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1

  • Cecilia L. Speyer
  • Mahdy A. Nassar
  • Ali H. Hachem
  • Miriam A. Bukhsh
  • Waris S. Jafry
  • Rafa M. Khansa
  • David H. GorskiEmail author
Preclinical study


Riluzole, the only drug approved by the FDA for treating amyotrophic lateral sclerosis, inhibits melanoma proliferation through its inhibitory effect on glutamatergic signaling. We demonstrated that riluzole also inhibits the growth of triple-negative breast cancer (TNBC) and described a role for metabotropic glutamate receptor-1 (GRM1) in regulating TNBC cell growth and progression. However, the role of GRM1 in mediating riluzole’s effects in breast cancer has not been fully elucidated. In this study, we seek to determine how much of riluzole’s action in breast cancer is mediated through GRM1. We investigated anti-tumor properties of riluzole in TNBC and ER+ cells using cell growth, invasion, and soft-agar assays and compared riluzole activity with GRM1 levels. Using Lentiviral vectors expressing GRM1 or shGRM1, these studies were repeated in cells expressing high or low GRM1 levels where the gene was either silenced or overexpressed. Riluzole inhibited proliferation, invasion, and colony formation in both TNBC and ER+ cells. There was a trend between GRM1 expression in TNBC cells and their response to riluzole in both cell proliferation and invasion assays. However, silencing and overexpression studies had no effect on cell sensitivity to riluzole. Our results clearly suggest a GRM1-independent mechanism through which riluzole mediates its effects on breast cancer cells. Understanding the mechanism by which riluzole mediates breast cancer progression will be useful in identifying new therapeutic targets for treating TNBC and in facilitating stratification of patients in clinical trials using riluzole in conjunction with conventional therapy.


Metabotropic glutamate receptor-1 Breast cancer Riluzole Voltage-gated sodium channels 



We are grateful to Dr. Stephen Ethier for kindly providing us with his SUM cell lines and Dr. Fred Miller for kindly providing us with his 4T1 cell line. We are also thankful to Dr. Manohar Ratnam for all his help, insight, and advice throughout this study. This study was supported by a CDMRP BCRP, Breakthrough Award (Level 1) funded by the Department of Defense.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics. CA Cancer J Clin 65(2):87–108. doi: 10.3322/caac.21262 CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin. doi: 10.3322/caac.21332 Google Scholar
  3. 3.
    Cleere DW (2010) Triple-negative breast cancer: a clinical update. Commun Oncol 7:203–211CrossRefGoogle Scholar
  4. 4.
    Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948. doi: 10.1056/NEJMra1001389 CrossRefPubMedGoogle Scholar
  5. 5.
    Narod SA, Dent RA, Foulkes WD (2015) CCR 20th anniversary commentary: triple-negative breast cancer in 2015-still in the ballpark. Clin Cancer Res 21(17):3813–3814. doi: 10.1158/1078-0432.CCR-14-3122 CrossRefPubMedGoogle Scholar
  6. 6.
    Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125(3):627–636. doi: 10.1007/s10549-010-1293-1 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Speyer CL, Smith JS, Banda M, DeVries JA, Mekani T, Gorski DH (2012) Metabotropic glutamate receptor-1: a potential therapeutic target for the treatment of breast cancer. Breast Cancer Res Treat 132(2):565–573. doi: 10.1007/s10549-011-1624-x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Banda M, Speyer CL, Semma SN, Osuala KO, Kounalakis N, Torres Torres KE, Barnard NJ, Kim HJ, Sloane BF, Miller FR, Goydos JS, Gorski DH (2014) Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One 9(1):e81126. doi: 10.1371/journal.pone.0081126 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Speyer CL, Hachem AH, Assi AA, Johnson JS, DeVries JA, Gorski DH (2014) Metabotropic glutamate receptor-1 as a novel target for the antiangiogenic treatment of breast cancer. PLoS One 9(3):e88830. doi: 10.1371/journal.pone.0088830 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Teh JL, Shah R, La Cava S, Dolfi SC, Mehta MS, Kongara S, Price S, Ganesan S, Reuhl KR, Hirshfield KM, Karantza V, Chen S (2015) Metabotropic glutamate receptor 1 disrupts mammary acinar architecture and initiates malignant transformation of mammary epithelial cells. Breast Cancer Res Treat 151(1):57–73. doi: 10.1007/s10549-015-3365-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173(2):278–286. doi: 10.1016/j.tvjl.2005.11.007 CrossRefPubMedGoogle Scholar
  12. 12.
    Bellingham MC (2011) A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 17(1):4–31. doi: 10.1111/j.1755-5949.2009.00116.x CrossRefPubMedGoogle Scholar
  13. 13.
    Endoh T (2004) Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius. Brain Res 1024(1–2):212–224. doi: 10.1016/j.brainres.2004.07.074 CrossRefPubMedGoogle Scholar
  14. 14.
    Wokke J (1996) Riluzole. Lancet 348(9030):795–799. doi: 10.1016/S0140-6736(96)03181-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A, Zhu H, Robbins C, Makalowska I, Shin SS, Marin Y, Roberts KG, Yudt LM, Chen A, Cheng J, Incao A, Pinkett HW, Graham CL, Dunn K, Crespo-Carbone SM, Mackason KR, Ryan KB, Sinsimer D, Goydos J, Reuhl KR, Eckhaus M, Meltzer PS, Pavan WJ, Trent JM, Chen S (2003) Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34(1):108–112. doi: 10.1038/ng1148 CrossRefPubMedGoogle Scholar
  16. 16.
    Namkoong J, Shin SS, Lee HJ, Marin YE, Wall BA, Goydos JS, Chen S (2007) Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res 67(5):2298–2305. doi: 10.1158/0008-5472.CAN-06-3665 CrossRefPubMedGoogle Scholar
  17. 17.
    Le MN, Chan JL, Rosenberg SA, Nabatian AS, Merrigan KT, Cohen-Solal KA, Goydos JS (2010) The glutamate release inhibitor riluzole decreases migration, invasion, and proliferation of melanoma cells. J Invest Dermatol 130(9):2240–2249. doi: 10.1038/jid.2010.126 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee HJ, Wall BA, Wangari-Talbot J, Shin SS, Rosenberg S, Chan JL, Namkoong J, Goydos JS, Chen S (2011) Glutamatergic pathway targeting in melanoma: single-agent and combinatorial therapies. Clin Cancer Res 17(22):7080–7092. doi: 10.1158/1078-0432.CCR-11-0098 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wen YY, Li J, Koo J, Shin SS, Lin Y, Jeong BS, Mehnert JM, Chen S, Cohen-Solal K, Goydos JS (2014) Activation of the glutamate receptor GRM1 enhances angiogenic signaling to drive melanoma progression. Cancer Res 74:2499–2509. doi: 10.1158/0008-5472.CAN-13-1531 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosenberg SA, Niglio SA, Salehomoum N, Chan JL, Jeong BS, Wen Y, Li J, Fukui J, Chen S, Shin SS, Goydos JS (2015) Targeting glutamatergic signaling and the PI3 kinase pathway to halt melanoma progression. Transl Oncol 8(1):1–9. doi: 10.1016/j.tranon.2014.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Song JH, Huang CS, Nagata K, Yeh JZ, Narahashi T (1997) Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 282(2):707–714PubMedGoogle Scholar
  22. 22.
    Noh KM, Hwang JY, Shin HC, Koh JY (2000) A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis 7(4):375–383. doi: 10.1006/nbdi.2000.0297 CrossRefPubMedGoogle Scholar
  23. 23.
    Choi JS, Ryu JH, Zuo Z, Yang SM, Chang HW, Do SH (2013) Riluzole attenuates excitatory amino acid transporter type 3 activity in Xenopus oocytes via protein kinase C inhibition. Eur J Pharmacol 713(1–3):39–43. doi: 10.1016/j.ejphar.2013.04.048 CrossRefPubMedGoogle Scholar
  24. 24.
    Mehta MS, Dolfi SC, Bronfenbrener R, Bilal E, Chen C, Moore D, Lin Y, Rahim H, Aisner S, Kersellius RD, Teh J, Chen S, Toppmeyer DL, Medina DJ, Ganesan S, Vazquez A, Hirshfield KM (2013) Metabotropic glutamate receptor 1 expression and its polymorphic variants associate with breast cancer phenotypes. PLoS ONE 8(7):e69851. doi: 10.1371/journal.pone.0069851 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sartor CI, Dziubinski ML, Yu CL, Jove R, Ethier SP (1997) Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res 57(5):978–987PubMedGoogle Scholar
  26. 26.
    Tannheimer SL, Rehemtulla A, Ethier SP (2000) Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Breast Cancer Res 2(4):311–320CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405PubMedGoogle Scholar
  28. 28.
    Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, Minna JD, Pollack JR (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 4(7):e6146. doi: 10.1371/journal.pone.0006146 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Khan AJ, Wall BA, Ahlawat S, Green C, Schiff D, Mehnert JM, Goydos JS, Chen S, Haffty BG (2011) Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that ectopically express metabotropic glutamate receptor 1 in vitro and in vivo. Clin Cancer Res 17(7):1807–1814. doi: 10.1158/1078-0432.CCR-10-1276 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen S, Zhu H, Wetzel WJ, Philbert MA (1996) Spontaneous melanocytosis in transgenic mice. J Invest Dermatol 106(5):1145–1151CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu H, Reuhl K, Botha R, Ryan K, Wei J, Chen S (2000) Development of early melanocytic lesions in transgenic mice predisposed to melanoma. Pigment Cell Res 13(3):158–164CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu H, Reuhl K, Zhang X, Botha R, Ryan K, Wei J, Chen S (1998) Development of heritable melanoma in transgenic mice. J Invest Dermatol 110(3):247–252. doi: 10.1046/j.1523-1747.1998.00133.x CrossRefPubMedGoogle Scholar
  33. 33.
    Shin SS, Namkoong J, Wall BA, Gleason R, Lee HJ, Chen S (2008) Oncogenic activities of metabotropic glutamate receptor 1 (Grm1) in melanocyte transformation. Pigment Cell Melanoma Res 21(3):368–378. doi: 10.1111/j.1755-148X.2008.00452.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nelson M, Yang M, Dowle AA, Thomas JR, Brackenbury WJ (2015) The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer 14:13. doi: 10.1186/s12943-014-0277-x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nelson M, Yang M, Millican-Slater R, Brackenbury WJ (2015) Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 6(32):32914–32929. doi: 10.18632/oncotarget.5441
  36. 36.
    Debono MW, Le Guern J, Canton T, Doble A, Pradier L (1993) Inhibition by riluzole of electrophysiological responses mediated by rat kainate and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 235(2–3):283–289CrossRefPubMedGoogle Scholar
  37. 37.
    Kretschmer BD, Kratzer U, Schmidt WJ (1998) Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch Pharmacol 358(2):181–190CrossRefPubMedGoogle Scholar
  38. 38.
    Azbill RD, Mu X, Springer JE (2000) Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 871(2):175–180CrossRefPubMedGoogle Scholar
  39. 39.
    Dunlop J, Beal McIlvain H, She Y, Howland DS (2003) Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci 23(5):1688–1696PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cecilia L. Speyer
    • 1
  • Mahdy A. Nassar
    • 2
  • Ali H. Hachem
    • 1
    • 3
  • Miriam A. Bukhsh
    • 1
    • 4
  • Waris S. Jafry
    • 5
  • Rafa M. Khansa
    • 5
  • David H. Gorski
    • 1
    • 6
    Email author
  1. 1.Michael and Marian Ilitch Department of SurgeryWayne State University School of Medicine, Barbara Ann Karmanos Cancer InstituteDetroitUSA
  2. 2.Kirksville College of Osteopathic MedicineKirksvilleUSA
  3. 3.College of MedicineCentral Michigan UniversityMt. PleasantUSA
  4. 4.Oakland University William Beaumont School of MedicineRochesterUSA
  5. 5.University of Michigan - DearbornDearbornUSA
  6. 6.Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteDetroitUSA

Personalised recommendations