Clinical utility of reverse phase protein array for molecular classification of breast cancer

Abstract

Reverse Phase Protein Array (RPPA) represents a sensitive and high-throughput technique allowing simultaneous quantitation of protein expression levels in biological samples. This study aimed to confirm the ability of RPPA to classify archival formalin-fixed paraffin-embedded (FFPE) breast cancer tissues into molecular classes used in the Nottingham prognostic index plus (NPI+) determined by immunohistochemistry (IHC). Proteins were extracted from FFPE breast cancer tissues using three extraction protocols: the Q-proteome FFPE Tissue Kit (Qiagen, Hilden, Germany) and two in-house methods using Laemmli buffer with either incubation for 20 min or 2 h at 105 °C. Two preparation methods, full-face sections and macrodissection, were used to assess the yield and quality of protein extracts. Ten biomarkers used for the NPI+ (ER, PgR, HER2, Cytokeratins 5/6 and 7/8, EGFR, HER3, HER4, p53 and Mucin 1) were quantified using RPPA and compared to results determined by IHC. The Q-proteome FFPE Tissue Kit produced significantly higher protein concentration and signal intensities. The intra- and inter-array reproducibility assessment indicated that RPPA using FFPE lysates was a highly reproducible and robust technique. Expression of the biomarkers individually and in combination using RPPA was highly consistent with IHC results. Macrodissection of the invasive tumour component gave more reliable results with the majority of biomarkers determined by IHC, (80 % concordance) compared with full-face sections (60 % concordance). Our results provide evidence for the technical feasibility of RPPA for high-throughput protein expression profiling of FFPE breast cancer tissues. The sensitivity of the technique is related to the quality of extracted protein and purity of tumour tissue. RPPA could provide a quantitative technique alternative to IHC for the biomarkers used in the NPI+.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Hewitt SM, Lewis FA, Cao Y, Conrad RC, Cronin M, Danenberg KD, Goralski TJ, Langmore JP, Raja RG, Williams PM et al (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med 132(12):1929–1935

    PubMed  Google Scholar 

  2. 2.

    Hood BL, Conrads TP, Veenstra TD (2006) Unravelling the proteome of formalin-fixed paraffin-embedded tissue. Brief Funct Genomic Proteomic 5(2):169–175

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Mueller C, Edmiston KH, Carpenter C, Gaffney E, Ryan C, Ward R, White S, Memeo L, Colarossi C, Petricoin EF 3rd et al (2011) One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 6(8):e23780

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  4. 4.

    Speer R, Wulfkuhle J, Espina V, Aurajo R, Edmiston KH, Liotta LA, Petricoin EF 3rd (2007) Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics 4(3):157–164

    PubMed  CAS  Google Scholar 

  5. 5.

    Gillespie JW, Best CJ, Bichsel VE, Cole KA, Greenhut SF, Hewitt SM, Ahram M, Gathright YB, Merino MJ, Strausberg RL et al (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 160(2):449–457

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  6. 6.

    Becker KF, Schott C, Becker I, Hofler H (2008) Guided protein extraction from formalin-fixed tissues for quantitative multiplex analysis avoids detrimental effects of histological stains. Proteomics Clin Appl 2(5):737–743

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Rhodes A, Jasani B, Barnes DM, Bobrow LG, Miller KD (2000) Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J Clin Pathol 53(2):125–130

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  8. 8.

    Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168

    PubMed  CAS  Google Scholar 

  9. 9.

    Green AR, Powe DG, Rakha EA, Soria D, Lemetre C, Nolan CC, Barros FF, Macmillan RD, Garibaldi JM, Ball GR et al (2013) Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers. Br J Cancer 109(7):1886–1894

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  10. 10.

    Rakha EA, Soria D, Green AR, Lemetre C, Powe DG, Nolan CC, Garibaldi JM, Ball G, Ellis IO (2014) Nottingham prognostic index plus (NPI+): a modern clinical decision making tool in breast cancer. Br J Cancer 110(7):1688–1697

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  11. 11.

    Spurrier B, Ramalingam S, Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3(11):1796–1808

    PubMed  Article  Google Scholar 

  12. 12.

    Brase JC, Mannsperger H, Frohlich H, Gade S, Schmidt C, Wiemann S, Beissbarth T, Schlomm T, Sultmann H, Korf U (2010) Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification. Proteome Sci 8:36

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT (2010) Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 70(17):6704–6714

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  14. 14.

    Uhlmann S, Mannsperger H, Zhang JD, Horvat EA, Schmidt C, Kublbeck M, Henjes F, Ward A, Tschulena U, Zweig K et al (2012) Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol Syst Biol 8:570

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Henjes F, Bender C, von der Heyde S, Braun L, Mannsperger HA, Schmidt C, Wiemann S, Hasmann M, Aulmann S, Beissbarth T et al (2012) Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis 1:e16

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  16. 16.

    Pierobon M, Silvestri A, Spira A, Reeder A, Pin E, Banks S, Parasido E, Edmiston K, Liotta L, Petricoin E (2014) Pilot phase I/II personalized therapy trial for metastatic colorectal cancer: evaluating the feasibility of protein pathway activation mapping for stratifying patients to therapy with imatinib and panitumumab. J Proteome Res 13(6):2846–2855

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Frederick MJ, VanMeter AJ, Gadhikar MA, Henderson YC, Yao H, Pickering CC, Williams MD, El-Naggar AK, Sandulache V, Tarco E et al (2011) Phosphoproteomic analysis of signaling pathways in head and neck squamous cell carcinoma patient samples. Am J Pathol 178(2):548–571

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  18. 18.

    Assadi M, Lamerz J, Jarutat T, Farfsing A, Paul H, Gierke B, Breitinger E, Templin MF, Essioux L, Arbogast S et al (2013) Multiple protein analysis of formalin-fixed and paraffin-embedded tissue samples with reverse phase protein arrays. Mol Cell Proteomics 12(9):2615–2622

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  19. 19.

    Loebke C, Sueltmann H, Schmidt C, Henjes F, Wiemann S, Poustka A, Korf U (2007) Infrared-based protein detection arrays for quantitative proteomics. Proteomics 7(4):558–564

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Aleskandarany MA, Negm OH, Green AR, Ahmed MA, Nolan CC, Tighe PJ, Ellis IO, Rakha EA (2014) Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Res Treat 145(2):339–348

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Negm OH, Mannsperger HA, McDermott EM, Drewe E, Powell RJ, Todd I, Fairclough LC, Tighe PJ (2014) A pro-inflammatory signalome is constitutively activated by C33Y mutant TNF receptor 1 in TNF receptor-associated periodic syndrome (TRAPS). Eur J Immunol 44(7):2096–2110

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  22. 22.

    Mannsperger HA, Gade S, Henjes F, Beissbarth T, Korf U (2010) RPPanalyzer: analysis of reverse-phase protein array data. Bioinformatics 26(17):2202–2203

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109(8):716–721

    PubMed  Google Scholar 

  24. 24.

    Becker KF, Schott C, Hipp S, Metzger V, Porschewski P, Beck R, Nahrig J, Becker I, Hofler H (2007) Quantitative protein analysis from formalin-fixed tissues: implications for translational clinical research and nanoscale molecular diagnosis. J Pathol 211(3):370–378

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  26. 26.

    Nirmalan NJ, Hughes C, Peng J, McKenna T, Langridge J, Cairns DA, Harnden P, Selby PJ, Banks RE (2011) Initial development and validation of a novel extraction method for quantitative mining of the formalin-fixed, paraffin-embedded tissue proteome for biomarker investigations. J Proteome Res 10(2):896–906

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  27. 27.

    Addis MF, Tanca A, Pagnozzi D, Crobu S, Fanciulli G, Cossu-Rocca P, Uzzau S (2009) Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded tissues. Proteomics 9(15):3815–3823

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Wolff C, Schott C, Malinowsky K, Berg D, Becker KF (2011) Producing reverse phase protein microarrays from formalin-fixed tissues. Methods Mol Biol 785:123–140

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Elledge RM, Allred DC (1998) Prognostic and predictive value of p53 and p21 in breast cancer. Breast Cancer Res Treat 52(1–3):79–98

    PubMed  CAS  Article  Google Scholar 

  30. 30.

    Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z, Davies MA, Liu W, Coombes K, Meric-Bernstam F et al (2010) A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics 6(4):129–151

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  31. 31.

    Anagnostou VK, Welsh AW, Giltnane JM, Siddiqui S, Liceaga C, Gustavson M, Syrigos KN, Reiter JL, Rimm DL (2010) Analytic variability in immunohistochemistry biomarker studies. Cancer Epidemiol Biomarkers Prev 19(4):982–991

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  32. 32.

    Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J, Mammano E, Yang SX, Swain SM, Nitti D et al (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7(4):1508–1517

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ola H. Negm.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Negm, O.H., Muftah, A.A., Aleskandarany, M.A. et al. Clinical utility of reverse phase protein array for molecular classification of breast cancer. Breast Cancer Res Treat 155, 25–35 (2016). https://doi.org/10.1007/s10549-015-3654-2

Download citation

Keywords

  • Reverse phase protein array
  • Formalin-fixed and paraffin-embedded
  • Protein extraction
  • Breast cancer
  • Nottingham prognostic index plus