Advertisement

Breast Cancer Research and Treatment

, Volume 155, Issue 1, pp 37–52 | Cite as

184AA3: a xenograft model of ER+ breast adenocarcinoma

  • William C. HinesEmail author
  • Irene Kuhn
  • Kate Thi
  • Berbie Chu
  • Gaelen Stanford-Moore
  • Rocío Sampayo
  • James C. Garbe
  • Martha Stampfer
  • Alexander D. Borowsky
  • Mina  J. BissellEmail author
Preclinical study

Abstract

Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER+) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER+ adenocarcinomas that had a high proliferative rate and other features consistent with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44High subpopulation was discovered, yet their tumor forming ability was far less than CD44Low cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER+ cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.

Keywords

Luminal breast cancer models Xenograft Intratumoral heterogeneity Microenvironment 

Notes

Acknowledgments

For their invaluable technical assistance during this project, we thank Maria Rojec, Dinah Groesser, Alvin Lo, Sun-Young Lee, Xuefei Tian, and Eva Lee (Lawrence Berkeley National Laboratory). We appreciate also the expertise and help given by Judith Walls and Ed Hubbard (University of California, Davis Center for Comparative Medicine). We express special gratitude also to Michelle Scott of the LBNL flow cytometry and Advanced microscopy facility for her expert technical advice and assistance. Grant support: Innovator award to M.J.B. from the U.S. Department of Defense (W81XWH0810736 and W81XWH12M9532) and in part by National Cancer Institute awards (R37CA064786, R01CA140663, U54CA112970) and by grants from the U.S. Department of Energy, Office of Biological and Environmental Research and Low Dose Scientific Focus Area (Contract No. DE-AC02-05CH1123) and the Breast Cancer Research Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Animal Welfare

All procedures performed in studies involving animals were in accordance with the ethical standards of the Lawrence Berkeley National Laboratory, at which all such studies were conducted.

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10549_2015_3649_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (PDF 4046 kb)

References

  1. 1.
    Box GE, Draper NR (1987) Empirical model-building and response surfaces, vol 424. Wiley, New YorkGoogle Scholar
  2. 2.
    Hines WC, Yaswen P, Bissell MJ (2015) Modelling breast cancer requires identification and correction of a critical cell lineage-dependent transduction bias. Nat Commun 6:6927. doi: 10.1038/ncomms7927 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wagner KU (2004) Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res 6(1):31–38. doi: 10.1186/bcr723 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi: 10.1038/nature11412 CrossRefGoogle Scholar
  5. 5.
    O’Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, Foulkes WD, Dressler LG, Geradts J, Millikan RC (2010) Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res 16(24):6100–6110. doi: 10.1158/1078-0432.CCR-10-1533 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Tran B, Bedard PL (2011) Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 13(6):221. doi: 10.1186/bcr2904 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS, McMichael JF, Miller CA, Lu C, Harris CC, McLellan MD, Wendl MC, DeSchryver K, Allred DC, Esserman L, Unzeitig G, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Leitch M, Hunt K, Olson J, Tao Y, Maher CA, Fulton LL, Fulton RS, Harrison M, Oberkfell B, Du F, Demeter R, Vickery TL, Elhammali A, Piwnica-Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica-Worms D, Stuart JM, Wilson RK, Mardis ER (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403):353–360. doi: 10.1038/nature11143 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Burdall SE, Hanby AM, Lansdown MR, Speirs V (2003) Breast cancer cell lines: friend or foe? Breast Cancer Res 5(2):89–95PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, Manuel CA, Edgerton SM, Harrell JC, Elias A, Sartorius CA (2012) Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat 135(2):415–432. doi: 10.1007/s10549-012-2164-8 PubMedCrossRefGoogle Scholar
  10. 10.
    DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL (2011) Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med 17(11):1514–1520. doi: 10.1038/nm.2454 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cottu P, Bieche I, Assayag F, El Botty R, Chateau-Joubert S, Thuleau A, Bagarre T, Albaud B, Rapinat A, Gentien D, de la Grange P, Sibut V, Vacher S, Hatem R, Servely JL, Fontaine JJ, Decaudin D, Pierga JY, Roman-Roman S, Marangoni E (2014) Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin Cancer Res 20(16):4314–4325. doi: 10.1158/1078-0432.CCR-13-3230 PubMedCrossRefGoogle Scholar
  12. 12.
    Briand P, Petersen OW, Van Deurs B (1987) A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. Vitro Cell Dev Biol 23(3):181–188CrossRefGoogle Scholar
  13. 13.
    Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, Myers CA, Bascom JL, Mott JD, Semeiks JR, Grate LR, Mian IS, Borowsky AD, Jensen RA, Idowu MO, Chen F, Chen DJ, Petersen OW, Gray JW, Bissell MJ (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5):1378–1387. doi: 10.1158/0008-5472.CAN-07-2225 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50(18):6075–6086PubMedGoogle Scholar
  15. 15.
    Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, Bissell MJ (2006) Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66(3):1526–1535. doi: 10.1158/0008-5472.CAN-05-3071 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dawson PJ, Wolman SR, Tait L, Heppner GH, Miller FR (1996) MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol 148(1):313–319PubMedPubMedCentralGoogle Scholar
  17. 17.
    Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci U S A 82(8):2394–2398PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stampfer MR, LaBarge MA, Garbe JC (2013) An integrated human mammary epithelial cell culture system for studying carcinogenesis and aging. In: Schatten H (ed) Cell and molecular biology of breast cancer. Springer, Berlin, pp 323–361CrossRefGoogle Scholar
  19. 19.
    Severson PL, Vrba L, Stampfer MR, Futscher BW (2014) Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat Res, Genet Toxicol Environ Mutagen 775–776:48–54. doi: 10.1016/j.mrgentox.2014.10.011 CrossRefGoogle Scholar
  20. 20.
    Heppner GH, Miller BE (1983) Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev 2(1):5–23PubMedCrossRefGoogle Scholar
  21. 21.
    Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K (2014) Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514(7520):54–58. doi: 10.1038/nature13556 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935. doi: 10.1038/nrc2013 PubMedCrossRefGoogle Scholar
  23. 23.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511PubMedCrossRefGoogle Scholar
  26. 26.
    Biddle A, Gammon L, Fazil B, Mackenzie IC (2013) CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition. PLoS One 8(2):e57314. doi: 10.1371/journal.pone.0057314 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Graham JD, Mote PA, Salagame U, Balleine RL, Huschtscha LI, Clarke CL (2009) Hormone-responsive model of primary human breast epithelium. J Mammary Gland Biol Neoplasia 14(4):367–379. doi: 10.1007/s10911-009-9160-6 PubMedCrossRefGoogle Scholar
  28. 28.
    Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, Britschgi A, Eichlisberger T, Kohler H, Aina O, Cardiff RD, Bentires-Alj M (2015) PIK3CA(H1047R) induces multipotency and multi-lineage mammary tumours. Nature 525(7567):114–118. doi: 10.1038/nature14669 PubMedCrossRefGoogle Scholar
  29. 29.
    Van Keymeulen A, Lee MY, Ousset M, Brohee S, Rorive S, Giraddi RR, Wuidart A, Bouvencourt G, Dubois C, Salmon I, Sotiriou C, Phillips WA, Blanpain C (2015) Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature 525(7567):119–123. doi: 10.1038/nature14665 PubMedCrossRefGoogle Scholar
  30. 30.
    Bissell MJ, Bartholomew JC, Folkman J, Smith H, Stampfer M (1979) Culture systems for studying malignancy. Cancer Res 39:4293–4295Google Scholar
  31. 31.
    Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA, Paulson TG, Blount PL, Risques RA, Rabinovitch PS, Reid BJ (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38(4):468–473. doi: 10.1038/ng1768 PubMedCrossRefGoogle Scholar
  32. 32.
    Thomasset N, Lochter A, Sympson CJ, Lund LR, Williams DR, Behrendtsen O, Werb Z, Bissell MJ (1998) Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol 153(2):457–467. doi: 10.1016/S0002-9440(10)65589-7 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zhang P, Lo A, Huang Y, Huang G, Liang G, Mott J, Karpen GH, Blakely EA, Bissell MJ, Barcellos-Hoff MH, Snijders AM, Mao JH (2015) Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment. Sci Rep 5:8919. doi: 10.1038/srep08919 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kim J, Villadsen R, Sorlie T, Fogh L, Gronlund SZ, Fridriksdottir AJ, Kuhn I, Rank F, Wielenga VT, Solvang H, Edwards PA, Borresen-Dale AL, Ronnov-Jessen L, Bissell MJ, Petersen OW (2012) Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A 109(16):6124–6129. doi: 10.1073/pnas.1203203109 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Stampfer MR, Garbe J, Nijjar T, Wigington D, Swisshelm K, Yaswen P (2003) Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines. Oncogene 22(34):5238–5251. doi: 10.1038/sj.onc.1206667 PubMedCrossRefGoogle Scholar
  36. 36.
    Cardiff RD, Hubbard NE, Engelberg JA, Munn RJ, Miller CH, Walls JE, Chen JQ, Velasquez-Garcia HA, Galvez JJ, Bell KJ, Beckett LA, Li YJ, Borowsky AD (2013) Quantitation of fixative-induced morphologic and antigenic variation in mouse and human breast cancers. Lab Invest 93(4):480–497. doi: 10.1038/labinvest.2013.10 PubMedCrossRefGoogle Scholar
  37. 37.
    Labarge MA, Garbe JC, Stampfer MR (2013) Processing of human reduction mammoplasty and mastectomy tissues for cell culture. J Vis Exp. doi:  10.3791/50011
  38. 38.
    Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, Wyrobek AJ, Stampfer MR (2009) Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res 69(19):7557–7568. doi: 10.1158/0008-5472.CAN-09-0270 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, Feleppa F, Huschtscha LI, Thorne HJ, Fox SB, Yan M, French JD, Brown MA, Smyth GK, Visvader JE, Lindeman GJ (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15(8):907–913. doi: 10.1038/nm.2000 PubMedCrossRefGoogle Scholar
  40. 40.
    Hines WC, Su Y, Kuhn I, Polyak K, Bissell MJ (2014) Sorting out the FACS: a devil in the details. Cell reports 6(5):779–781PubMedCrossRefGoogle Scholar
  41. 41.
    Wang DY, Fulthorpe R, Liss SN, Edwards EA (2004) Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol 18(2):402–411. doi: 10.1210/me.2003-0202 PubMedCrossRefGoogle Scholar
  42. 42.
    Toth M, Gervasi DC, Fridman R (1997) Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells. Cancer Res 57(15):3159–3167PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • William C. Hines
    • 1
    Email author
  • Irene Kuhn
    • 1
  • Kate Thi
    • 1
  • Berbie Chu
    • 1
  • Gaelen Stanford-Moore
    • 1
  • Rocío Sampayo
    • 2
  • James C. Garbe
    • 1
  • Martha Stampfer
    • 1
  • Alexander D. Borowsky
    • 3
  • Mina  J. Bissell
    • 1
    Email author
  1. 1.Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Área InvestigaciónInstituto de Oncología Angel H. Roffo-UBABuenos AiresArgentina
  3. 3.Department of Pathology and Laboratory Medicine and Center for Comparative MedicineUniversity of California, DavisDavisUSA

Personalised recommendations