Skip to main content

Advertisement

Log in

Photodynamic therapy as an effective therapeutic approach in MAME models of inflammatory breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a minimally invasive, FDA-approved therapy for treatment of endobronchial and esophageal cancers that are accessible to light. Inflammatory breast cancer (IBC) is an aggressive and highly metastatic form of breast cancer that spreads to dermal lymphatics, a site that would be accessible to light. IBC patients have a relatively poor survival rate due to lack of targeted therapies. The use of PDT is underexplored for breast cancers but has been proposed for treatment of subtypes for which a targeted therapy is unavailable. We optimized and used a 3D mammary architecture and microenvironment engineering (MAME) model of IBC to examine the effects of PDT using two treatment protocols. The first protocol used benzoporphyrin derivative monoacid A (BPD) activated at doses ranging from 45 to 540 mJ/cm2. The second PDT protocol used two photosensitizers: mono-l-aspartyl chlorin e6 (NPe6) and BPD that were sequentially activated. Photokilling by PDT was assessed by live–dead assays. Using a MAME model of IBC, we have shown a significant dose–response in photokilling by BPD–PDT. Sequential activation of NPe6 followed by BPD is more effective in photokilling of tumor cells than BPD alone. Sequential activation at light doses of 45 mJ/cm2 for each agent resulted in >90 % cell death, a response only achieved by BPD–PDT at a dose of 360 mJ/cm2. Our data also show that effects of PDT on a volumetric measurement of 3D MAME structures reflect efficacy of PDT treatment. Our study is the first to demonstrate the potential of PDT for treating IBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IBC:

Inflammatory breast cancer

ECM:

Extracellular matrix

rBM:

Reconstituted basement membrane

2D:

2-dimensional

3D:

3-dimensional

PDT:

Photodynamic therapy

BPD:

Benzoporphyrin derivative monoacid A

NPe6:

N-aspartyl chlorin e6

MAME:

Mammary architecture and microenvironment engineering

MEGM:

Mammary epithelial cell growth medium

References

  1. Chang S, Parker SL, Pham T, Buzdar AU, Hursting SD (1998) Inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program of the National Cancer Institute, 1975–1992. Cancer 82(12):2366–2372

    Article  CAS  PubMed  Google Scholar 

  2. Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, Sneige N, Islam R, Ueno NT, Buchholz TA, Singletary SE, Hortobagyi GN (2007) Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer 110(7):1436–1444. doi:10.1002/cncr.22927

    Article  PubMed  Google Scholar 

  3. Low JA, Berman AW, Steinberg SM, Danforth DN, Lippman ME, Swain SM (2004) Long-term follow-up for locally advanced and inflammatory breast cancer patients treated with multimodality therapy. J Clin Oncol Off J Am Soc Clin Oncol 22(20):4067–4074. doi:10.1200/JCO.2004.04.068

    Article  CAS  Google Scholar 

  4. van Uden DJ, van Laarhoven HW, Westenberg AH, de Wilt JH, Blanken-Peeters CF (2015) Inflammatory breast cancer: an overview. Crit Rev Oncol/Hematol 93(2):116–126. doi:10.1016/j.critrevonc.2014.09.003

    Article  Google Scholar 

  5. Matro JM, Li T, Cristofanilli M, Hughes ME, Ottesen RA, Weeks JC, Wong YN (2015) Inflammatory breast cancer management in the national comprehensive cancer network: the disease, recurrence pattern, and outcome. Clin Breast Cancer 15(1):1–7. doi:10.1016/j.clbc.2014.05.005

    Article  PubMed  Google Scholar 

  6. Bertucci F, Tarpin C, Charafe-Jauffret E, Bardou VJ, Braud AC, Tallet A, Gravis G, Viret F, Goncalves A, Houvenaeghel G, Blaise D, Jacquemier J, Maraninchi D, Viens P (2004) Multivariate analysis of survival in inflammatory breast cancer: impact of intensity of chemotherapy in multimodality treatment. Bone Marrow Transplant 33(9):913–920. doi:10.1038/sj.bmt.1704458

    Article  CAS  PubMed  Google Scholar 

  7. Lo AC, Kleer CG, Banerjee M, Omar S, Khaled H, Eissa S, Hablas A, Douglas JA, Alford SH, Merajver SD, Soliman AS (2008) Molecular epidemiologic features of inflammatory breast cancer: a comparison between Egyptian and US patients. Breast Cancer Res Treat 112(1):141–147. doi:10.1007/s10549-007-9833-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Soliman AS, Kleer CG, Mrad K, Karkouri M, Omar S, Khaled HM, Benider AL, Ayed FB, Eissa SS, Eissa MS, McSpadden EJ, Lo AC, Toy K, Kantor ED, Xiao Q, Hampton C, Merajver SD (2011) Inflammatory breast cancer in north Africa: comparison of clinical and molecular epidemiologic characteristics of patients from Egypt, Tunisia, and Morocco. Breast Dis 33(4):159–169. doi:10.3233/BD-2012-000337

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Masuda H, Baggerly KA, Wang Y, Iwamoto T, Brewer T, Pusztai L, Kai K, Kogawa T, Finetti P, Birnbaum D, Dirix L, Woodward WA, Reuben JM, Krishnamurthy S, Symmans W, Van Laere SJ, Bertucci F, Hortobagyi GN, Ueno NT (2013) Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers. Breast Cancer Res 15(6):R112. doi:10.1186/bcr3579

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zell JA, Tsang WY, Taylor TH, Mehta RS, Anton-Culver H (2009) Prognostic impact of human epidermal growth factor-like receptor 2 and hormone receptor status in inflammatory breast cancer (IBC): analysis of 2,014 IBC patient cases from the California Cancer Registry. Breast Cancer Res 11(1):R9. doi:10.1186/bcr2225

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhou J, Yan Y, Guo L, Ou H, Hai J, Zhang C, Wu Z, Tang L (2014) Distinct outcomes in patients with different molecular subtypes of inflammatory breast cancer. Saudi Med J 35(11):1324–1330

    PubMed Central  PubMed  Google Scholar 

  12. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281. doi:10.3322/caac.20114

    Article  PubMed Central  PubMed  Google Scholar 

  13. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838. doi:10.1021/cr900300p

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kessel D, Oleinick NL (2010) Photodynamic therapy and cell death pathways. Methods Mol Biol 635:35–46. doi:10.1007/978-1-60761-697-9_3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387. doi:10.1038/nrc1071

    Article  CAS  PubMed  Google Scholar 

  16. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Biel MA (2007) Photodynamic therapy treatment of early oral and laryngeal cancers. Photochem Photobiol 83(5):1063–1068. doi:10.1111/j.1751-1097.2007.00153.x

    Article  CAS  PubMed  Google Scholar 

  18. Morrison SA, Hill SL, Rogers GS, Graham RA (2014) Efficacy and safety of continuous low-irradiance photodynamic therapy in the treatment of chest wall progression of breast cancer. J Surg Res 192(2):235–241. doi:10.1016/j.jss.2014.06.030

    Article  CAS  PubMed  Google Scholar 

  19. Allison RR, Sibata C, Mang TS, Bagnato VS, Downie GH, Hu XH, Cuenca R (2004) Photodynamic therapy for chest wall recurrence from breast cancer. Photodiagn Photodyn Ther 1(2):157–171. doi:10.1016/S1572-1000(04)00039-0

    Article  CAS  Google Scholar 

  20. Allison R, Mang T, Hewson G, Snider W, Dougherty D (2001) Photodynamic therapy for chest wall progression from breast carcinoma is an underutilized treatment modality. Cancer 91(1):1–8

    Article  CAS  PubMed  Google Scholar 

  21. Rogers GS (2012) Continuous low-irradiance photodynamic therapy: a new therapeutic paradigm. J Natl Compr Cancer Netw 10(Suppl 2):S14–S17

    CAS  Google Scholar 

  22. Acedo P, Stockert JC, Canete M, Villanueva A (2014) Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Cell Death Dis 5:e1122. doi:10.1038/cddis.2014.77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kessel D, Reiners JJ Jr (2014) Enhanced efficacy of photodynamic therapy via a sequential targeting protocol. Photochem Photobiol 90(4):889–895. doi:10.1111/php.12270

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Villanueva A, Stockert JC, Canete M, Acedo P (2010) A new protocol in photodynamic therapy: enhanced tumour cell death by combining two different photosensitizers. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol 9(3):295–297. doi:10.1039/b9pp00153k

    CAS  Google Scholar 

  25. Eke I, Cordes N (2011) Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiother Oncol J Eur Soc Ther Radiol Oncol 99(3):271–278. doi:10.1016/j.radonc.2011.06.007

    Article  Google Scholar 

  26. Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18(5):311–321. doi:10.1016/j.semcancer.2008.03.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chen J, Wang J, Zhang Y, Chen D, Yang C, Kai C, Wang X, Shi F, Dou J (2014) Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture. J Biosci Bioeng 118(2):214–222. doi:10.1016/j.jbiosc.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Chow AB, Mattingly RR (2010) Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. J Pharmacol Exp Ther 332(3):821–828. doi:10.1124/jpet.109.160390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Storch K, Eke I, Borgmann K, Krause M, Richter C, Becker K, Schrock E, Cordes N (2010) Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res 70(10):3925–3934. doi:10.1158/0008-5472.CAN-09-3848

    Article  CAS  PubMed  Google Scholar 

  30. Rizvi I, Anbil S, Alagic N, Celli J, Zheng LZ, Palanisami A, Glidden MD, Pogue BW, Hasan T (2013) PDT dose parameters impact tumoricidal durability and cell death pathways in a 3D ovarian cancer model. Photochem Photobiol 89(4):942–952. doi:10.1111/php.12065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Celli JP, Solban N, Liang A, Pereira SP, Hasan T (2011) Verteporfin-based photodynamic therapy overcomes gemcitabine insensitivity in a panel of pancreatic cancer cell lines. Lasers Surg Med 43(7):565–574. doi:10.1002/lsm.21093

    Article  PubMed Central  PubMed  Google Scholar 

  32. Anbil S, Rizvi I, Celli JP, Alagic N, Pogue BW, Hasan T (2013) Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. J Biomed Opt 18(9):098004. doi:10.1117/1.JBO.18.9.098004

    Article  PubMed Central  PubMed  Google Scholar 

  33. Osuala KO, Sameni M, Shah S, Aggarwal N, Simonait ML, Franco OE, Hong Y, Hayward SW, Behbod F, Mattingly RR, Sloane BF (2015) Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer 15:584. doi:10.1186/s12885-015-1576-3

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, Moin K, Blum G, Mattingly RR, Gillies RJ, Sloane BF (2013) Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15(10):1125–1137

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mullins SR, Sameni M, Blum G, Bogyo M, Sloane BF, Moin K (2012) Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins. Biol Chem 393(12):1405–1416. doi:10.1515/hsz-2012-0252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sameni M, Anbalagan A, Olive MB, Moin K, Mattingly RR, Sloane BF (2012) MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression. J Vis Exp 60:e3661. doi:10.3791/3661

    Google Scholar 

  37. Moin K, Sameni M, Victor BC, Rothberg JM, Mattingly RR, Sloane BF (2012) 3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. Methods Enzymol 506:175–194. doi:10.1016/B978-0-12-391856-7.00034-2

    Article  CAS  PubMed  Google Scholar 

  38. Victor BC, Anbalagan A, Mohamed MM, Sloane BF, Cavallo-Medved D (2011) Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res 13(6):R115. doi:10.1186/bcr3058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jedeszko C, Victor BC, Podgorski I, Sloane BF (2009) Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res 69(23):9148–9155. doi:10.1158/0008-5472.CAN-09-1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Weaver VM, Bissell MJ (1999) Functional culture models to study mechanisms governing apoptosis in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplas 4(2):193–201

    Article  CAS  Google Scholar 

  41. Bissell MJ, Weaver VM, Lelievre SA, Wang F, Petersen OW, Schmeichel KL (1999) Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer research 59(7 Suppl):1757–1763s discussion 1763 s-1764 s

    CAS  PubMed  Google Scholar 

  42. Howlett AR, Bissell MJ (1993) The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithel Cell Biol 2(2):79–89

    CAS  Google Scholar 

  43. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688. doi:10.1038/nrc1695

    Article  CAS  PubMed  Google Scholar 

  44. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111(1):29–40

    Article  CAS  PubMed  Google Scholar 

  45. Sameni M, Dosescu J, Yamada KM, Sloane BF, Cavallo-Medved D (2008) Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells. Mol Imaging 7(5):199–213

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Celli JP, Rizvi I, Blanden AR, Massodi I, Glidden MD, Pogue BW, Hasan T (2014) An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep 4:3751. doi:10.1038/srep03751

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121(7):2750–2767. doi:10.1172/JCI45014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Guelfi MR, Masoni M, Torelli G, Fonda S, Caramella D (1994) A proposal for the use of tridimensional reconstruction in oncology to better assess tumor stage and response to therapy. Radiol Med (Torino) 87(5):669–676

    CAS  Google Scholar 

  49. Edgerton ME, Chuang YL, Macklin P, Yang W, Bearer EL, Cristini V (2011) A novel, patient-specific mathematical pathology approach for assessment of surgical volume: application to ductal carcinoma in situ of the breast. Anal Cell Pathol 34(5):247–263. doi:10.3233/ACP-2011-0019

    Article  Google Scholar 

  50. Mozley PD, Schwartz LH, Bendtsen C, Zhao B, Petrick N, Buckler AJ (2010) Change in lung tumor volume as a biomarker of treatment response: a critical review of the evidence. Ann Oncol Off J Eur Soc Med Oncol/ESMO 21(9):1751–1755. doi:10.1093/annonc/mdq051

    Article  CAS  Google Scholar 

  51. Mukherji SK, Schmalfuss IM, Castelijns J, Mancuso AA (2004) Clinical applications of tumor volume measurements for predicting outcome in patients with squamous cell carcinoma of the upper aerodigestive tract. AJNR Am J Neuroradiol 25(8):1425–1432

    PubMed  Google Scholar 

  52. Lee CC, Huang TT, Lee MS, Hsiao SH, Lin HY, Su YC, Hsu FC, Hung SK (2010) Clinical application of tumor volume in advanced nasopharyngeal carcinoma to predict outcome. Radiat Oncol 5:20. doi:10.1186/1748-717X-5-20

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol, B, Biol 42(2):89–95

    Article  CAS  Google Scholar 

  54. Kessel D, Reiners JJ Jr (2007) Apoptosis and autophagy after mitochondrial or endoplasmic reticulum photo damage. Photochem Photobiol 83(5):1024–1028. doi:10.1111/j.1751-1097.2007.00088.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Agarwal ML, Clay ME, Harvey EJ, Evans HH, Antunez AR, Oleinick NL (1991) Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Res 51(21):5993–5996

    CAS  PubMed  Google Scholar 

  56. Diamond I, Granelli SG, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R (1972) Photodynamic therapy of malignant tumours. Lancet 2(7788):1175–1177

    Article  CAS  PubMed  Google Scholar 

  57. Andrzejak M, Price M, Kessel DH (2011) Apoptotic and autophagic responses to photodynamic therapy in 1c1c7 murine hepatoma cells. Autophagy 7(9):979–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Kessel D, Luo Y, Mathieu P, Reiners JJ Jr (2000) Determinants of the apoptotic response to lysosomal photodamage. Photochem Photobiol 71(2):196–200

    Article  CAS  PubMed  Google Scholar 

  59. Reiners JJ Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D (2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 9(9):934–944. doi:10.1038/sj.cdd.4401048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182:471–474

    Article  PubMed  Google Scholar 

  62. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  63. Granville DJ, Carthy CM, Jiang H, Shore GC, McManus BM, Hunt DW (1998) Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett 437(1–2):5–10

    Article  CAS  PubMed  Google Scholar 

  64. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273(16):9357–9360

    Article  CAS  PubMed  Google Scholar 

  65. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. doi:10.1038/sj.cdd.4400476

    Article  CAS  PubMed  Google Scholar 

  66. Renehan AG, Booth C, Potten CS (2001) What is apoptosis, and why is it important? BMJ 322(7301):1536–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ding X, Xu Q, Liu F, Zhou P, Gu Y, Zeng J, An J, Dai W, Li X (2004) Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett 216(1):43–54. doi:10.1016/j.canlet.2004.07.005

    Article  CAS  PubMed  Google Scholar 

  68. Henderson BW, Donovan JM (1989) Release of prostaglandin E2 from cells by photodynamic treatment in vitro. Cancer Res 49(24 Pt 1):6896–6900

    CAS  PubMed  Google Scholar 

  69. Dahle J, Kaalhus O, Moan J, Steen HB (1997) Cooperative effects of photodynamic treatment of cells in microcolonies. Proc Natl Acad Sci USA 94(5):1773–1778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Dahle J, Bagdonas S, Kaalhus O, Olsen G, Steen HB, Moan J (2000) The bystander effect in photodynamic inactivation of cells. Biochim Biophys Acta 1475(3):273–280

    Article  CAS  PubMed  Google Scholar 

  71. Dawood S, Ueno NT, Valero V, Woodward WA, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM, Cristofanilli M (2012) Identifying factors that impact survival among women with inflammatory breast cancer. Ann Oncol Off J Eur Soc Med Oncol/ESMO 23(4):870–875. doi:10.1093/annonc/mdr319

    Article  CAS  Google Scholar 

  72. Kessel D, Poretz RD (2000) Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME). Photochem Photobiol 71(1):94–96

    Article  CAS  PubMed  Google Scholar 

  73. Cincotta L, Szeto D, Lampros E, Hasan T, Cincotta AH (1996) Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas. Photochem Photobiol 63(2):229–237

    Article  CAS  PubMed  Google Scholar 

  74. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8(10):1124–1132. doi:10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  75. Kessel D, Reiners JJ Jr (2015) Promotion of Proapoptotic Signals by Lysosomal Photodamage. Photochem Photobiol 91(4):931–936. doi:10.1111/php.12456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kamiar Moin and the Microscopy, Imaging and Cytometry Resources Core at Wayne State University School for consultation and training on the use of confocal microscopes.

Authors’ Contributions

NA carried out the experiments. AMS provided technical support with experiments. NA, DK, and BFS made substantial contributions to concept and design of experiments as well as drafting and/or revising the manuscript.

Funding

This work was supported by National Institute of Health R01 CA131990 to BFS and CA23378 to DK. Imaging was performed in the Microscopy, Imaging and Cytometry Resources Core of Wayne State University, which was supported in part by NIH Center grant P30CA22453 to the Karmanos Cancer Institute and by the Perinatology Branch of the National Institute of Child Health and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Aggarwal.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2015_3618_MOESM1_ESM.pptx

Supplemental Fig. 1 BPD-PDT induces dose-dependent photokilling of MAME structures of Hs578T cells. Tiled 16-panel images and z-stacks through the depth of structures were captured and reconstructed in 3D to show an en face view (a). Images show live cells (green, calcein AM) and dead cells (red, ethidium homodimer-1) and were taken 24 h after PDT with 1.5 µM BPD and for non-treated dark control; scale bar equals 700 microns. Intensities of red (dead) and green (live) fluorescence were used to calculate viability that is plotted against PDT dose (b). Significance was calculated by one-way ANOVA, p-value < 0.0001; n = 6, mean ± SD. Supplemental Fig. 2 Combination PDT results in a dose-dependent decrease in viability. SUM149 cells were grown in MAME cultures for 8 days followed by combination PDT. Live/Dead assay was performed 24 h after PDT, 16 panel z-stack images were captured (shown in Fig. 2) and intensities of red and green fluorescence were used to calculate viability and plotted against treatment. Significance was calculated by one-way ANOVA followed by Tukey’s post hoc analysis: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001; n = 6-8, mean ± SD. Supplemental Fig. 3 Photokilling induced by sequential PDT protocol is comparable at one and two days post PDT. Optical sections through the depth of 3D structures were captured for 16 contiguous fields and reconstructed in 3D. Images were taken on day 1 (a-c) and day 2 (a’-c’) after combination PDT for 22.5 mJ/cm2 each with 1.5 µM BPD and 40 µM NPe6 and show live cells (green, calcein AM) and dead cells (red, ethidium homodimer-1) for untreated dark control (a, a’); sequential light irradiation targeting mitochondria then lysosomes (b, b’); and sequential light irradiation targeting lysosomes then mitochondria (c, c’); scale bars equal 40 microns. Intensities of red and green fluorescence were used to calculate viability and plotted against days post-PDT (d); Significance was calculated by ANOVA followed by Tukey’s post hoc analysis: **** p-value < 0.0001, n = 8-10, mean ± SD. (PPTX 3331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, N., Santiago, A.M., Kessel, D. et al. Photodynamic therapy as an effective therapeutic approach in MAME models of inflammatory breast cancer. Breast Cancer Res Treat 154, 251–262 (2015). https://doi.org/10.1007/s10549-015-3618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3618-6

Keywords

Navigation