Skip to main content

Advertisement

Log in

Differential expression of epithelial–mesenchymal transition and stem cell markers in intrinsic subtypes of breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The transcription factors SLUG and SOX9 have been shown to define mammary stem cell state. Similarly, epithelial–mesenchymal transition (EMT) markers (E-Cadherin, mTOR) have been shown to play a role in tumor-progression and metastatic potential in breast cancer. Finally, SOX10 is known to be expressed in breast cancer as well. The overexpressions of EMT and stem cell markers have been shown to correlate with poor overall survival. In this study, we examined whether the expression of these markers correlates with intrinsic subtypes of breast cancer and whether there is a prognostic difference in their expression-profile. We analyzed 617 breast cancer samples from two tissue micro arrays. Breast cancer samples were categorized into three groups according to hormone receptor expression and HER2-status as Luminal A/B, HER2-positive, and triple negative subgroup. Immunohistochemical expressions of SLUG, SOX9, SOX10, E-Cadherin, and mTOR were semi-quantitatively analyzed using a two-tiered and three-tiered scoring system in which cytoplasmic and nuclear stains were considered. Strong nuclear expression of SLUG was observed preferentially in triple negative but not in Luminal A/B or HER2-positive cases (24 vs. 3 and 0 %, p < 0.001). Loss of SOX9 in the nuclear stain was less frequent in triple negative than in Luminal A/B or HER2-positive cases (4 vs. 9 vs. 13 %, p < 0.001). Expression of nuclear SOX10 was lower in triple negative than in Luminal A/B and HER2-positive cases (67 vs.78 and 79 %, p = 0.012). E-Cadherin loss was observed only in Luminal A/B tumors (p = 0.016), no difference in the mTOR expression was seen between any of the three groups. No correlation to conventional histopathological-parameters or stage could be established in our cohort. Our study shows an inversed preferential nuclear expression of SLUG, SOX10, and SOX9 in triple negative and non-triple negative cases. This information is important in understanding the biology of triple negative breast cancer, also in terms of future studies dealing with targeted therapies based on the alterations of EMT and stem cell markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkatout I, Wiedermann M, Bauer M, Wenners A, Jonat W, Klapper W (2013) Transcription factors associated with epithelial–mesenchymal transition and cancer stem cells in the tumor centre and margin of invasive breast cancer. Exp Mol Pathol 94:168–173. doi:10.1016/j.yexmp.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Anwar TE, Kleer CG (2013) Tissue-based identification of stem cells and epithelial-to-mesenchymal transition in breast cancer. Hum Pathol 44:1457–1464. doi:10.1016/j.humpath.2013.01.005

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chakravarty G, Moroz K, Makridakis NM, Lloyd SA, Galvez SE, Canavello PR, Lacey MR, Agrawal K, Mondal D (2011) Prognostic significance of cytoplasmic SOX9 in invasive ductal carcinoma and metastatic breast cancer. Exp Biol Med (Maywood) 236:145–155. doi:10.1258/ebm.2010.010086236/2/145

    Article  CAS  Google Scholar 

  4. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376. doi:10.1158/1078-0432.CCR-07-1658

    Article  CAS  PubMed  Google Scholar 

  5. Choi Y, Lee HJ, Jang MH, Gwak JM, Lee KS, Kim EJ, Kim HJ, Lee HE, Park SY (2013) Epithelial–mesenchymal transition increases during the progression of in situ to invasive basal-like breast cancer. Hum Pathol 44:2581–2589. doi:10.1016/j.humpath.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  6. Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Park BH, Taube JM, Illei PB, Argani P (2013) Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum Pathol 44:959–965. doi:10.1016/j.humpath.2012.09.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, Senn HJ, Panel Members (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24:2206–2223. doi:10.1093/annonc/mdt303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, Zhao H, Landis MD, Dave B, Gross SS, Chang JC (2015) Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res 17:25. doi:10.1186/s13058-015-0527-x

    Article  PubMed Central  PubMed  Google Scholar 

  9. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zurrer-Hardi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148:1015–1028. doi:10.1016/j.cell.2012.02.008S0092-8674(12)00165-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gupta P, Srivastava SK (2014) Inhibition of Integrin-HER2 signaling by Cucurbitacin B leads to in vitro and in vivo breast tumor growth suppression. Oncotarget 5:1812–1828

    Article  PubMed Central  PubMed  Google Scholar 

  11. Hugo HJ, Kokkinos MI, Blick T, Ackland ML, Thompson EW, Newgreen DF (2011) Defining the E-cadherin repressor interactome in epithelial–mesenchymal transition: the PMC42 model as a case study. Cells Tissues Organs 193:23–40. doi:10.1159/000320174

    Article  PubMed  Google Scholar 

  12. Ito M, Shien T, Omori M, Mizoo T, Iwamoto T, Nogami T, Motoki T, Taira N, Doihara H, Miyoshi S (2015) Evaluation of aldehyde dehydrogenase 1 and transcription factors in both primary breast cancer and axillary lymph node metastases as a prognostic factor. Breast Cancer. doi:10.1007/s12282-015-0583-1

    Google Scholar 

  13. Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, Guo Y, Sewell A, Yarbrough WG (2013) Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer 109:444–451. doi:10.1038/bjc.2013.326bjc2013326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Wu Y, Abbatiello TC, Wu WL, Kim JR, Sarkissyan M, Sarkissyan S, Chung SS, Elshimali Y, Vadgama JV (2015) Slug contributes to cancer progression by direct regulation of ERalpha signaling pathway. Int J Oncol 46:1461–1472. doi:10.3892/ijo.2015.2878

    PubMed Central  PubMed  Google Scholar 

  16. Mallini P, Lennard T, Kirby J, Meeson A (2014) Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev 40:341–348. doi:10.1016/j.ctrv.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  17. Markiewicz A, Ahrends T, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Jaskiewicz J, Szade J, Biernat W, Zaczek AJ (2012) Expression of epithelial to mesenchymal transition-related markers in lymph node metastases as a surrogate for primary tumor metastatic potential in breast cancer. J Transl Med 10:226. doi:10.1186/1479-5876-10-2261479-5876-10-226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EN, Gao H, Jackson SA, Giordano A, Hortobagyi GN, Cristofanilli M, Lucci A, Reuben JM (2012) Expression of epithelial–mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Int J Cancer 130:808–816. doi:10.1002/ijc.26037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Paplomata E, O’Regan R (2014) The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol 6:154–166. doi:10.1177/1758834014530023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi:10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  21. Riemenschnitter C, Teleki I, Tischler V, Guo W, Varga Z (2013) Stability and prognostic value of Slug, Sox9 and Sox10 expression in breast cancers treated with neoadjuvant chemotherapy. Springerplus 2:695. doi:10.1186/2193-1801-2-695

    Article  PubMed Central  PubMed  Google Scholar 

  22. Shamir ER, Ewald AJ (2015) Adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr Top Dev Biol 112:353–382. doi:10.1016/bs.ctdb.2014.12.001

    Article  PubMed  Google Scholar 

  23. Soady K, Smalley MJ (2012) Slugging their way to immortality: driving mammary epithelial cells into a stem cell-like state. Breast Cancer Res 14:319

    Article  PubMed Central  PubMed  Google Scholar 

  24. Theurillat JP, Zürrer-Härdi U, Varga Z, Storz M, Probst-Hensch NM, Seifert B, Fehr MK, Fink D, Ferrone S, Pestalozzi B, Jungbluth AA, Chen YT, Jäger D, Knuth A, Moch H (2007) NY-BR-1 protein expression in breast carcinoma: a mammary gland differentiation antigen as target for cancer immunotherapy. Cancer Immunol Immunother 56:1723–1731. doi:10.1007/s00262-007-0316-1

    Article  CAS  PubMed  Google Scholar 

  25. Vicier C, Dieci MV, Arnedos M, Delaloge S, Viens P, Andre F (2014) Clinical development of mTOR inhibitors in breast cancer. Breast Cancer Res 16:203. doi:10.1186/bcr3618

    Article  PubMed Central  PubMed  Google Scholar 

  26. Weigelt B, Geyer FC, Reis-Filho JS (2010) Histological types of breast cancer: how special are they? Mol Oncol 4:192–208. doi:10.1016/j.molonc.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  27. Weigelt B, Mackay A, A’Hern R, Natrajan R, Tan DS, Dowsett M, Ashworth A, Reis-Filho JS (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11:339–349. doi:10.1016/S1470-2045(10)70008-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to Mrs. Martina Storz for preparing the TMA sections, to Mr André Fitsche for performing all immunohistochemical stains and to Mr. André Wethmar and Mr Norbert Wey for preparing the high quality illustrations and performing the digitalization of the stained TMA slides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Varga.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomp, V., Leo, C., Mauracher, A. et al. Differential expression of epithelial–mesenchymal transition and stem cell markers in intrinsic subtypes of breast cancer. Breast Cancer Res Treat 154, 45–55 (2015). https://doi.org/10.1007/s10549-015-3598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3598-6

Keywords

Navigation