Skip to main content

Advertisement

Log in

RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Although the upregulated expression of Anxa2 has been implicated in carcinogenesis, cancer progression, and poor prognosis of cancer patients, the detailed molecular mechanisms involved in these processes remain unclear. In this study, we investigated the effect of Anxa2 downregulation with small interference RNA on breast cancer proliferation. To explore molecular mechanisms underlying Anxa2-mediated cancer cell proliferation. We analyzed cell cycle distribution and signaling pathways using semi-quantitative real-time PCR and Western blotting. Anxa2 depletion in breast cancer cells significantly inhibited cell proliferation by decelerating cell cycle progression. The retarded G1-to-S phase transition in Anxa2-silenced cells was attributed to the decreased levels of cyclin D1, which is a crucial promoting factor for cell proliferation because it regulates G1-to-S phase transition during cell cycle progression. We provided evidence that Anxa2 regulates epidermal growth factor-induced phosphorylation of STAT3. The reduced expression of phosphorylated STAT3 is the main factor responsible for decreased cyclin D1 levels in Anxa2-silenced breast cancer cells. Our results revealed the direct relationship between Anxa2 and activation of STAT3, a key transcription factor that plays a pivotal role in regulating breast cancer proliferation and survival. This study provides novel insights into the functions of Anxa2 as a critical molecule in cellular signal transduction and significantly improves our understanding of the mechanism through which Anxa2 regulates cell cycle and cancer cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balmanno K, Cook SJ (1999) Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18:3085–3097. doi:10.1038/sj.onc.1202647

    Article  CAS  PubMed  Google Scholar 

  2. Bao H, Jiang M, Zhu M, Sheng F, Ruan J, Ruan C (2009) Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. Int J Hematol 90:177–185. doi:10.1007/s12185-009-0356-8

    Article  CAS  PubMed  Google Scholar 

  3. Bharadwaj A, Bydoun M, Holloway R, Waisman D (2013) Annexin A2 heterotetramer: structure and function. Int J Mol Sci 14:6259–6305. doi:10.3390/ijms14036259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303. doi:10.1016/S0092-8674(00)81959-5

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhary P, Thamake SI, Shetty P, Vishwanatha JK (2014) Inhibition of triple-negative and Herceptin-resistant breast cancer cell proliferation and migration by Annexin A2 antibodies. Br J Cancer 111:2328–2341. doi:10.1038/bjc.2014.542

    Article  CAS  PubMed  Google Scholar 

  6. Chuthapisith S, Bean BE, Cowley G, Eremin JM, Samphao S, Layfield R, Kerr ID, Wiseman J, El-Sheemy M, Sreenivasan T, Eremin O (2009) Annexins in human breast cancer: possible predictors of pathological response to neoadjuvant chemotherapy. Eur J Cancer 45:1274–1281. doi:10.1016/j.ejca.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  7. De Graauw M, Cao L, Winkel L, van Miltenburg MH, le Devedec SE, Klop M, Yan K, Pont C, Rogkoti VM, Tijsma A, Chaudhuri A, Lalai R, Price L, Verbeek F, van de Water B (2013) Annexin A2 depletion delays EGFR endocytic trafficking via cofilin activation and enhances EGFR signaling and metastasis formation. Oncogene. doi:10.1038/onc.2013.219

    PubMed  Google Scholar 

  8. Duncan R, Carpenter B, Main LC, Telfer C, Murray GI (2008) Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer 98:426–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Emoto K, Sawada H, Yamada Y, Fujimoto H, Takahama Y, Ueno M, Takayama T, Uchida H, Kamada K, Naito A, Hirao S, Nakajima Y (2001) Annexin II overexpression is correlated with poor prognosis in human gastric carcinoma. Anticancer Res 21:1339–1345

    CAS  PubMed  Google Scholar 

  10. Emoto K, Yamada Y, Sawada H, Fujimoto H, Ueno M, Takayama T, Kamada K, Naito A, Hirao S, Nakajima Y (2001) Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92:1419–1426. doi:10.1002/1097-0142

    Article  CAS  PubMed  Google Scholar 

  11. Esposito I, Penzel R, Chaib-Harrireche M, Barcena U, Bergmann F, Riedl S, Kayed H, Giese N, Kleeff J, Friess H, Schirmacher P (2006) Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J Pathol 208:673–685. doi:10.1002/path.1935

    Article  CAS  PubMed  Google Scholar 

  12. Filipenko NR, MacLeod TJ, Yoon CS, Waisman DM (2004) Annexin A2 is a novel RNA-binding protein. J Biol Chem 279:8723–8731. doi:10.1074/jbc.M311951200

    Article  CAS  PubMed  Google Scholar 

  13. Gao H, Yu B, Yan Y, Shen J, Zhao S, Zhu J, Qin W, Gao Y (2013) Correlation of expression levels of ANXA2, PGAM1, and CALR with glioma grade and prognosis. J Neurosurg 118:846–853. doi:10.3171/2012.9.JNS112134

    Article  CAS  PubMed  Google Scholar 

  14. Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, Shi X, Jiang BH (2004) G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3 K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 287:C281–C291. doi:10.1152/ajpcell.00422.2003

    Article  CAS  PubMed  Google Scholar 

  15. Gao N, Zhang Z, Jiang BH, Shi X (2003) Role of PI3 K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 310:1124–1132

    Article  CAS  PubMed  Google Scholar 

  16. Gerke V, Weber K (1984) Identity of p36 K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J 3:227–233

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Glenney JR Jr, Tack BF (1985) Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc Natl Acad Sci USA 82:7884–7888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hsieh FC, Cheng G, Lin J (2005) Evaluation of potential Stat3-regulated genes in human breast cancer. Biochem Biophys Res Commun 335:292–299. doi:10.1016/j.bbrc.2005.07.075

    Article  CAS  PubMed  Google Scholar 

  19. Ishii Y, Waxman S, Germain D (2008) Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res 68:852–860. doi:10.1158/0008-5472.CAN-07-2879

    Article  CAS  PubMed  Google Scholar 

  20. Jin L, Shen Q, Ding S, Jiang W, Jiang L, Zhu X (2012) Immunohistochemical expression of Annexin A2 and S100A proteins in patients with bulky stage IB-IIA cervical cancer treated with neoadjuvant chemotherapy. Gynecol Oncol 126:140–146. doi:10.1016/j.ygyno.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  21. Kagawa S, Takano S, Yoshitomi H, Kimura F, Satoh M, Shimizu H, Yoshidome H, Ohtsuka M, Kato A, Furukawa K, Matsushita K, Nomura F, Miyazaki M (2012) Akt/mTOR signaling pathway is crucial for gemcitabine resistance induced by Annexin II in pancreatic cancer cells. J Surg Res 178:758–767. doi:10.1016/j.jss.2012.05.065

    Article  CAS  PubMed  Google Scholar 

  22. Klein EA, Assoian RK (2008) Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121:3853–3857. doi:10.1242/jcs.039131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271:20608–20616

    Article  CAS  PubMed  Google Scholar 

  24. Leslie K, Gao SP, Berishaj M, Podsypanina K, Ho H, Ivashkiv L, Bromberg J (2010) Differential interleukin-6/Stat3 signaling as a function of cellular context mediates Ras-induced transformation. Breast Cancer Res 12:R80. doi:10.1186/bcr2725

    Article  PubMed Central  PubMed  Google Scholar 

  25. Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, Kim YB, Paz K, Darnell JE, Albanese C, Sakamaki T, Pestell R, Bromberg J (2006) Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res 66:2544–2552. doi:10.1158/0008-5472.CAN-05-2203

    Article  CAS  PubMed  Google Scholar 

  26. Ling Q, Jacovina AT, Deora A, Febbraio M, Simantov R, Silverstein RL, Hempstead B, Mark WH, Hajjar KA (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 113:38–48. doi:10.1172/JCI19684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lokman NA, Ween MP, Oehler MK, Ricciardelli C (2011) The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 4:199–208. doi:10.1007/s12307-011-0064-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Luo CH, Liu QQ, Zhang PF, Li MY, Chen ZC, Liu YF (2013) Prognostic significance of annexin II expression in non-small cell lung cancer. Clin Trans Oncol 15:938–946. doi:10.1007/s12094-013-1028-y

    Article  CAS  Google Scholar 

  29. Mohammad HS, Kurokohchi K, Yoneyama H, Tokuda M, Morishita A, Jian G, Shi L, Murota M, Tani J, Kato K, Miyoshi H, Deguchi A, Himoto T, Usuki H, Wakabayashi H, Izuishi K, Suzuki Y, Iwama H, Deguchi K, Uchida N, Sabet EA, Arafa UA, Hassan AT, El-Sayed AA, Masaki T (2008) Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. Int J Oncol 33:1157–1163

    CAS  PubMed  Google Scholar 

  30. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11:558–572. doi:10.1038/nrc3090

    Article  CAS  PubMed  Google Scholar 

  31. Musgrove EA, Lee CS, Buckley MF, Sutherland RL (1994) Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91:8022–8026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ohno Y, Izumi M, Kawamura T, Nishimura T, Mukai K, Tachibana M (2009) Annexin II represents metastatic potential in clear-cell renal cell carcinoma. Br J Cancer 101:287–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Parrales A, Lopez E, Lee-Rivera I, Lopez-Colome AM (2013) ERK1/2-dependent activation of mTOR/mTORC1/p70S6 K regulates thrombin-induced RPE cell proliferation. Cell Signal 25:829–838. doi:10.1016/j.cellsig.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  34. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF, Sherr CJ (1993) Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7:1559–1571

    Article  CAS  PubMed  Google Scholar 

  35. Rescher U, Ludwig C, Konietzko V, Kharitonenkov A, Gerke V (2008) Tyrosine phosphorylation of annexin A2 regulates Rho-mediated actin rearrangement and cell adhesion. J Cell Sci 121:2177–2185

    Article  CAS  PubMed  Google Scholar 

  36. Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE, Hall BM (2007) Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J 21:3763–3770. doi:10.1096/fj.07-8832com

    Article  CAS  PubMed  Google Scholar 

  37. Saxena NK, Vertino PM, Anania FA, Sharma D (2007) leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3. J Biol Chem 282:13316–13325. doi:10.1074/jbc.M609798200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, Ekiel I, Pietrzynski G, Stanimirovic D, Alakhov V (2005) Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J Biol Chem 280:20833–20841. doi:10.1074/jbc.M412653200

    Article  CAS  PubMed  Google Scholar 

  39. Sharma M, Blackman MR, Sharma MC (2012) Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model. Exp Mol Pathol 92:175–184. doi:10.1016/j.yexmp.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  40. Sharma M, Ownbey RT, Sharma MC (2010) Breast cancer cell surface annexin II induces cell migration and neoangiogenesis via tPA dependent plasmin generation. Exp Mol Pathol 88:278–286

    Article  CAS  PubMed  Google Scholar 

  41. Sharma MR, Koltowski L, Ownbey RT, Tuszynski GP, Sharma MC (2006) Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 81:146–156

    Article  CAS  PubMed  Google Scholar 

  42. Shetty PK, Thamake SI, Biswas S, Johansson SL, Vishwanatha JK (2012) Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer. PLoS One 7:e44299. doi:10.1371/journal.pone.0044299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J (2005) Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 280:10964–10973. doi:10.1074/jbc.M407874200

    Article  CAS  PubMed  Google Scholar 

  44. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Lu G, Roodman GD, Loberg RD, Pienta KJ, Taichman RS (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380. doi:10.1002/jcb.21835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Takano S, Togawa A, Yoshitomi H, Shida T, Kimura F, Shimizu H, Yoshidome H, Ohtsuka M, Kato A, Tomonaga T, Nomura F, Miyazaki M (2008) Annexin II overexpression predicts rapid recurrence after surgery in pancreatic cancer patients undergoing gemcitabine-adjuvant chemotherapy. Ann Surg Oncol 15:3157–3168. doi:10.1245/s10434-008-0061-5

    Article  PubMed  Google Scholar 

  46. Velasco-Velazquez MA, Li Z, Casimiro M, Loro E, Homsi N, Pestell RG (2011) Examining the role of cyclin D1 in breast cancer. Future Oncol 7:753–765. doi:10.2217/fon.11.56

    Article  PubMed  Google Scholar 

  47. Wang CY, Chen CL, Tseng YL, Fang YT, Lin YS, Su WC, Chen CC, Chang KC, Wang YC, Lin CF (2012) Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J Biol Chem 287:32512–32524. doi:10.1074/jbc.M112.351957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Wang CY, Lin CF (2014) Annexin A2: its molecular regulation and cellular expression in cancer development. Dis Markers 2014:308976. doi:10.1155/2014/308976

    PubMed Central  PubMed  Google Scholar 

  49. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671. doi:10.1038/369669a0

    Article  CAS  PubMed  Google Scholar 

  50. Wang YQ, Zhang F, Tian R, Ji W, Zhou Y, Sun XM, Liu Y, Wang ZY, Niu RF (2012) Tyrosine 23 phosphorylation of Annexin A2 promotes proliferation, invasion, and Stat3 phosphorylation in the nucleus of human breast cancer SK-BR-3 Cells. Cancer Biol Med 9:248–253. doi:10.7497/j.issn.2095-3941.2012.04.005

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Wu B, Zhang F, Yu M, Zhao P, Ji W, Zhang H, Han J, Niu R (2012) Up-regulation of Anxa2 gene promotes proliferation and invasion of breast cancer MCF-7 cells. Cell Prolif 45:189–198. doi:10.1111/j.1365-2184.2012.00820.x

    Article  PubMed  Google Scholar 

  52. Yao H, Zhang Z, Xiao Z, Chen Y, Li C, Zhang P, Li M, Liu Y, Guan Y, Yu Y, Chen Z (2009) Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection. Lung Cancer 65:41–48

    Article  PubMed  Google Scholar 

  53. Yu GR, Kim SH, Park SH, Cui XD, Xu DY, Yu HC, Cho BH, Yeom YI, Kim SS, Kim SB, Chu IS (2007) Kim DG (2007) Identification of molecular markers for the oncogenic differentiation of hepatocellular carcinoma. Exp Mol Med 39:641–652

    Article  CAS  PubMed  Google Scholar 

  54. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  Google Scholar 

  55. Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021. doi:10.1038/35082500

    Article  CAS  PubMed  Google Scholar 

  56. Zhang F, Liu Y, Wang Z, Sun X, Yuan J, Wang T, Tian R, Ji W, Yu M, Zhao Y, Niu R (2015) A novel Anxa2-interacting protein Ebp1 inhibits cancer proliferation and invasion by suppressing Anxa2 protein level. Mol Cell Endocrinol 411:75–85. doi:10.1016/j.mce.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  57. Zhang F, Zhang H, Wang Z, Yu M, Tian R, Ji W, Yang Y, Niu R (2014) P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochem Pharmacol 87:292–302. doi:10.1016/j.bcp.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  58. Zhang F, Zhang L, Zhang B, Wei X, Yang Y, Qi RZ, Ying G, Zhang N, Niu R (2009) Anxa2 plays a critical role in enhanced invasiveness of the multidrug resistant human breast cancer cells. J Proteome Res 8:5041–5047. doi:10.1021/pr900461c

    Article  CAS  PubMed  Google Scholar 

  59. Zhang W, Zhao P, Xu XL, Cai L, Song ZS, Cao DY, Tao KS, Zhou WP, Chen ZN, Dou KF (2013) Annexin A2 promotes the migration and invasion of human hepatocellular carcinoma cells in vitro by regulating the shedding of CD147-harboring microvesicles from tumor cells. PLoS One 8:e67268. doi:10.1371/journal.pone.0067268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhang X, Liu S, Guo C, Zong J, Sun MZ (2012) The association of annexin A2 and cancers. Clin Trans Oncol 14:634–640. doi:10.1007/s12094-012-0855-6

    Article  CAS  Google Scholar 

  61. Zhao P, Zhang W, Tang J, Ma X, Dai J, Li Y, Jiang J, Zhang S, Chen Z (2010) Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci 101:387–395

    Article  CAS  PubMed  Google Scholar 

  62. Zhao P, Zhang W, Wang SJ, Yu XL, Tang J, Huang W, Li Y, Cui HY, Guo YS, Tavernier J, Zhang SH, Jiang JL, Chen ZN (2011) HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology 54:2012–2024. doi:10.1002/hep.24592

    Article  CAS  PubMed  Google Scholar 

  63. Zheng L, Foley K, Huang L, Leubner A, Mo G, Olino K, Edil BH, Mizuma M, Sharma R, Le DT, Anders RA, Illei PB, Van Eyk JE, Maitra A, Laheru D, Jaffee EM (2011) Tyrosine 23 phosphorylation-dependent cell-surface localization of annexin A2 is required for invasion and metastases of pancreatic cancer. PLoS One 6:e19390. doi:10.1371/journal.pone.0019390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Zhou S, Yi T, Liu R, Bian C, Qi X, He X, Wang K, Li J, Zhao X, Huang C, Wei Y (2012) Proteomics identification of annexin A2 as a key mediator in the metastasis and proangiogenesis of endometrial cells in human adenomyosis. Mol Cell Proteomics 11(M112):017988. doi:10.1074/mcp.M112.017988

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Nos. 81372844, and 81472474), Tianjin Municipal Science and Technology Commission (Nos. 12JCZDJC24500 and 12JCQNJC07000), Changjiang Scholars and Innovative Research Team (IRT1076), 863 Project (2012AA020206-5), Specialized Research Fund for the Doctoral Program of Higher Education (20131202110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifang Niu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Fei Zhang and Zhiyong Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wang, Z., Yuan, J. et al. RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway. Breast Cancer Res Treat 153, 263–275 (2015). https://doi.org/10.1007/s10549-015-3529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3529-6

Keywords

Navigation