Skip to main content

Advertisement

Log in

Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Anthracycline-induced cardiotoxicity (ACT) is a well-known serious adverse drug reaction leading to substantial morbidity. The purpose of this study was to assess ACT occurrence and clinical and genetic risk factors in early breast cancer patients. In 6 genes of interest (ABCC1, ABCC2, CYBA, NCF4, RAC2, SLC28A3), 10 single nucleotide polymorphisms (SNPs) involved in ACT were selected based on a literature search. Eight hundred and seventy-seven patients treated between 2000 and 2010 with 3–6 cycles of (neo) adjuvant 5-fluorouracil, epirubicin and cyclophosphamide (FEC) were genotyped for these SNPs using Sequenom MassARRAY. Main outcome measures were asymptomatic decrease of left ventricular ejection fraction (LVEF) > 10 % and cardiac failure grade 3–5 (CTCAE 4.0). To evaluate the impact of these 10 SNPs as well as clinical factors (age, relative dose intensity of epirubicin, left-sided radiotherapy, occurrence of febrile neutropenia, and planned and received cycles of epirubicin) on decrease of LVEF and cardiac failure, we performed uni- and multivariable logistic regression analysis. Additionally, exploratory analyses including 11 additional SNPs related to the metabolism of anthracyclines were performed. After a median follow-up of 3.62 years (range 0.40–9.60), a LVEF decline of > 10 % occurred in 153 patients (17.5 %) and cardiac failure in 16 patients (1.8 %). In multivariable analysis, six cycles of FEC compared to three cycles received and heterozygous carriers of the rs246221 T-allele in ABCC1 relative to homozygous carriers of the T-allele were significantly associated with LVEF decline of > 10 % (OR 1.3, 95 % CI 1.1–1.4, p < 0.001 and OR 1.6, 95 % CI 1.1–2.3, p = 0.02). Radiotherapy for left-sided breast cancer was associated with cardiac failure (OR 3.7, 95 % CI 1.2–11.5, p 0.026). The other 9 SNPs and clinical factors tested were not significantly associated. In our exploratory analysis, no other SNPs related to anthracycline metabolism were retained in the multivariate model for prediction of LVEF decline. ACT in breast cancer patients is related to number of received cycles of epirubicin and left-sided radiotherapy. Additional studies should be performed to independently confirm the potential association between rs246221 in ABCC1 and LVEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roché H, Fumoleau P, Spielmann M, Canon JL, Delozier T, Serin D, Symann M, Kerbrat P, Soulié P, Eichler F, Viens P, Monnier A, Vindevoghel A, Campone M, Goudier MJ, Bonneterre J, Ferrero JM, Martin AL, Genève J, Asselain B (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 trial. J Clin Oncol 24(36):5664–5671

    Article  PubMed  Google Scholar 

  2. Kremer LC, van der Pal HJ, Offringa M, van Dalen EC, Voûte PA (2002) frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol 13(6):819–829

    Article  CAS  PubMed  Google Scholar 

  3. Shan K, Lincoff AM, Young JB (1996) Anthracycline-induced cardiotoxicity. Ann Intern Med 125(1):47–58

    Article  CAS  PubMed  Google Scholar 

  4. Barry E, Alvarez JA, Scully RE, Miller TL, Lipshultz SE (2007) Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother 8(8):1039–1058

    Article  CAS  PubMed  Google Scholar 

  5. Roca-Alonso L, Pellegrino L, Castellano L, Strebbin J (2012) Breast cancer treatment and adverse cardiac events: what are the molecular mechanisms? Cardiology 122(4):253–259

    Article  CAS  PubMed  Google Scholar 

  6. Hudson MM, Rai SN, Nunez C, Merchant TE, Marina NM, Zalamea N, Cox C, Phipps S, Pompeu R, Rosenthal D (2007) Noninvasive evaluation of late anthracycline cardiac toxicity in childhood cancer survivors. J Clin Oncol 25(24):3635–3643

    Article  CAS  PubMed  Google Scholar 

  7. Wildiers H, Jurcut R, Ganame J, Herbots L, Neven P, De Backer J, Denys H, Cocquyt V, Rademakers F, Voigt JU, Paridaens R (2008) A Pilot study to investigate the feasibility and cardiac effects of pegylated liposomal doxorubicin (PL-DOX) as adjuvant therapy in medically fit elderly breast cancer patients. Crit Rev Hematol 67(2):133–138

    Article  Google Scholar 

  8. Jurcut R, Wildiers H, Ganame J, D’hooge J, De Backer J, Denys H, Paridaens R, Rademakers F, Voigt JU (2008) Strain rate imaging detects early cardiac effects of pegylated liposomal doxorubicin as adjuvant therapy in elderly patients with breast cancer. J Am Soc Echocardiogr 21(12):1283–1289

    Article  PubMed  Google Scholar 

  9. Vulsteke C, Lambrechts D, Dieudonné A, Hatse S, Brouwers B, van Brussel T, Neven P, Belmans A, Schöffski P, Paridaens R, Wildiers H (2013) Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC). Ann Oncol 24:1513–1525

    Article  CAS  PubMed  Google Scholar 

  10. Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ, Kiszel PS, Lautner-Csorba O, Szabolcs J, Masat P, Fekete G, Falus A, Szalai C, Kovacs GT (2012) ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblatic leukaemia. Cell Biol Int 36(1):79–86

    Article  CAS  PubMed  Google Scholar 

  11. Wojnowski L, Kulle B, Schirmer M, Schlüter G, Schmidt A, Rosenberger A, Vonhof S, Bickeböller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nürnberg P, Pfreundschuh M, Trümper L, Brockmöller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112(24):3754–3762

    Article  CAS  PubMed  Google Scholar 

  12. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dubé MP, AL-Saloos H, Sandor GS, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Brown AM, Rogers PC, Phillips MS, Rieder MJ, Carleton BC, Hayden MR, Canadian Pharmacogenomics Network for Drug Safety Consortium (2012) Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol 30(13):1422–1428

    Article  PubMed  Google Scholar 

  13. Visscher H, Ross CJ, Rassekh SR, Sandro GS, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Rogers PC, Rieder MJ, Carleton BC, Hayden MR, CPNDS Consortium (2013) Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer 60(8):1375–1381

    Article  CAS  PubMed  Google Scholar 

  14. Rajic V, Aplenc R, Debeljak M, Prestor VV, Karas-Kuzelicki N, Mlinaric-Rascan I, Jazbec J (2009) Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to leukemia in childhood. Leuk Lymphoma 50(10):1693–1698

    Article  CAS  PubMed  Google Scholar 

  15. Cascales A, Pastor-Quirante F, Sanchez-Vega B, Luengo-Gil G, Corral J, Ortuno-Pacheco G, Vicente V, de la Pena FA (2013) Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist. 18(4):446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, Mays A, Friedman DL, Ginsberg JP, Hudson MM, Neglia JP, Oeffinger KC, Ritchey AK, Villaluna D, Relling MV, Bhatia S (2012) Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol 30(13):1415–1421

    Article  CAS  PubMed  Google Scholar 

  17. Lubieniecka J, Graham J, Heffner D, Mottus R, Reid R, Hogge D, Grigliatti T, Riggs W (2013) A discovery study of daunorubicine induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes P450 oxidoreductase polymorphisms as a potential risk factor. Front Genet 11(4):231

    Google Scholar 

  18. Onitilo AA, Engel JM, Stankowski RV et al (2014) Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Ther Adv Drug Saf. 5(4):154–166

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goldhirsch A, Winer E, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24:2206–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. U.S. Department of Health and Human services, national institutes of health, national cancer institute. Cancer therapy Evaluation program-Common terminology Criteria for Adverse Events (CTCAE)-version 4.0. Published: May 28, 2009 (v4.03: June 14, 2010)

  21. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH, Cristofanilli M, Frye DK, Smith TL, Hunt KK, Singletary SE, Sahin AA, Ewer MS, Buchholz TA, Berry D, Hortobagyi GN (2005) Significantly higher pathologic complete resmission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23(16):3676–3685

    Article  CAS  PubMed  Google Scholar 

  22. Vulsteke C, Pfeil AM, Schwenkglenks M, Pettengell R, Szucs TD, Lambrechts D, Peeters M, van Dam P, Dieudonné AS, Hatse S, Neven P, Paridaens R, Wildiers H (2014) Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel. Breast Cancer Res Treat 147(3):557–570

  23. Pfeil AM, Vulsteke C, Paridaens R, Dieudonné AS, Pettengell R, Hatse S, Neven P, Lambrechts D, Szucs TD, Schwenkglenks M, Wildiers H (2014) Multivariable regression analysis of febrile neutropenia occurrence in early breast cancer patients receiving chemotherapy assessing patient-related, chemotherapy-related and genetic risk factors. BMC Cancer 19(14):201

    Article  Google Scholar 

  24. Reumers J, De Rijk P, Zhao H et al (2011) Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol 30:61–68

    Article  PubMed  Google Scholar 

  25. Sun L, Craiu RV, Paterson AD, Bull SB (2006) Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Genetic Epidemiol 30(6):519–530

    Article  Google Scholar 

  26. Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 16(3):17

    Article  Google Scholar 

  27. Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263–302

    Article  CAS  PubMed  Google Scholar 

  28. Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, Durand JB, Gibbs H, Zafarmand AA, Ewer MS (2004) cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    Article  PubMed  Google Scholar 

  29. Frei BL, Soefje SAE (2008) A review of the cardiovascular effects of oncology agents. J Pharm Pract 21:146–158

    Article  Google Scholar 

  30. Shah C, Badiyan S, Berry S, Khan AJ, Goyal S, Schulte K, Nanavati A, Lynch M, Vicini FA (2014) Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy. Radiotherapy Oncol. 112(1):9–16

    Article  Google Scholar 

  31. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–1166

    Article  CAS  PubMed  Google Scholar 

  32. Cole SP, Bhardwaj G, Gerlach JH et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  PubMed  Google Scholar 

  33. Flens MJ, Gj Zaman, van der Valk P et al (1996) Tissue distribution of the multidrug resistance protein. Am J Pathol 148:1237–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, Ding Y, Landier W, Blanco JG, Chen L, Quinones A, Ferguson D, Winick N, Ginsberg JP, Keller F, Neglia JP, Desai S, Sklar CA, Castellino SM, Cherrick I, Dreyer ZE, Hudson MM, Robison LL, Yasui Y, Relling MV, Bhatia S (2014) Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children’s oncology group. J Clin Oncol 32(7):647–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bristow MR, Billingham ME, Mason JW, Daniels JR (1978) Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62:873–879

    CAS  PubMed  Google Scholar 

  36. Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25:3808–3815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AMP’s institution of employment receives unrestricted scientific/educational grants from Amgen. MS’ institution of employment receives unrestricted scientific/educational grants from Amgen, and he has served on advisory boards for Amgen. RPe is on the speaker bureau for Amgen.

Conflicts of interest

All the other authors declare no conflicts of interest related to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Vulsteke.

Additional information

Christof Vulsteke and Alena M. Pfeil have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vulsteke, C., Pfeil, A.M., Maggen, C. et al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res Treat 152, 67–76 (2015). https://doi.org/10.1007/s10549-015-3437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3437-9

Keywords

Navigation