Skip to main content

Advertisement

Log in

Two PALB2 germline mutations found in both BRCA1+ and BRCAx familial breast cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Partner and localizer of BRCA2 (PALB2), plays an important functional role in DNA damage repair. Recent studies indicate that germline mutations in PALB2 predispose individuals to a high risk of developing familial breast cancer. Therefore, comprehensive identification of PALB2 germline mutations is potentially important for understanding their roles in tumorigenesis and for testing their potential utility as clinical targets. Most of the previous studies of PALB2 have focused on familial breast cancer cases with normal/wild-type BRCA1 and BRCA2 (BRCAx). We hypothesize that PALB2 genetic mutations also exist in individuals with BRCA mutations (BRCA+). To test this hypothesis, PALB2 germline mutations were screened in 107 exome data sets collected from familial breast cancer families who were either BRCA1+ or BRCAx. Two novel heterozygous mutations predicted to alter the function of PALB2 were identified (c.2014G>C, p.E672Q and c.2993G>A, p.G998E). Notably, both of these mutations co-existed in BRCA1+ and BRCA1x families. These studies show that mutations in PALB2 can occur independent of the status of BRCA1 mutations, and they highlight the importance to include BRCA1+ families in PALB2 mutation screens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

PALB2:

The partner and localizer of BRCA2

BRCA1:

Breast cancer 1, early onset

BRCA2:

Breast cancer 2, early onset

MAF:

Minor allele frequency

LOVD:

Leiden open variation database

References

  1. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22(6):719–729

    Article  CAS  PubMed  Google Scholar 

  2. Buisson R, Dion-Côté AM, Coulombe Y, Launay H, Cai H, Stasiak AZ, Stasiak A, Xia B, Masson JY (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17(10):1247–1254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q, Pals G, Errami A, Gluckman E, Llera J, Wang W, Livingston DM, Joenje H, de Winter JP (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39(2):159–161

    Article  CAS  PubMed  Google Scholar 

  4. Chen P, Liang J, Wang Z, Zhou X, Chen L, Li M, Xie D, Hu Z, Shen H, Wang H (2008) Association of common PALB2 polymorphisms with breast cancer risk: a case-control study. Clin Cancer Res 14(18):5931–5937

    Article  CAS  PubMed  Google Scholar 

  5. Janatova M, Kleibl Z, Stribrna J, Panczak A, Vesela K, Zimovjanova M, Kleiblova P, Dundr P, Soukupova J, Pohlreich P (2013) The PALB2 gene is a strong candidate for clinical testing in BRCA1- and BRCA2-negative hereditary breast cancer. Cancer Epidemiol Biomark Prev 22(12):2323–2332

    Article  CAS  Google Scholar 

  6. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, Lee A, Subramanian D, De Leeneer K, Fostira F, Tomiak E, Neuhausen SL, Teo ZL, Khan S, Aittomäki K, Moilanen JS, Turnbull C, Seal S, Mannermaa A, Kallioniemi A, Lindeman GJ, Buys SS, Andrulis IL, Radice P, Tondini C, Manoukian S, Toland AE, Miron P, Weitzel JN, Domchek SM, Poppe B, Claes KB, Yannoukakos D, Concannon P, Bernstein JL, James PA, Easton DF, Goldgar DE, Hopper JL, Rahman N, Peterlongo P, Nevanlinna H, King MC, Couch FJ, Southey MC, Winqvist R, Foulkes WD, Tischkowitz M (2014) Breast-cancer risk in families with mutations in PALB2. N Engl J Med 371(6):497–506

    Article  PubMed Central  PubMed  Google Scholar 

  7. Nelson HD, Fu R, Goddard K, Mitchell JP, Okinaka-Hu L, Pappas M, Zakher B (2013) Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: systematic review to update the U.S. preventive services task force recommendation. Rockville (MD): Agency for Healthcare Research and Quality (US). http://www.ncbi.nlm.nih.gov/books/NBK179201/

  8. Nguyen-Dumont T, Hammet F, Mahmoodi M, Tsimiklis H, Teo ZL, Li R, Pope BJ, Terry MB, Buys SS, Daly M, Hopper JL, Winship I, Goldgar DE, Park DJ, Southey MC (2015) Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry. Breast Cancer Res Treat 49(2):547–554

    Article  Google Scholar 

  9. Lynch H, Wen H, Kim YC, Snyder C, Kinarsky Y, Chen PX, Xiao F, Goldgar D, Cowan KH, Wang SM (2013) Can unknown predisposition in familial breast cancer be family-specific? Breast J 19:520–528

    CAS  PubMed  Google Scholar 

  10. Xiao F, Kim YC, Snyder C, Wen H, Chen PX, Luo J, Becirovic D, Downs B, Cowan KH, Lynch H, Wang SM (2014) Genome instability in blood cells of a BRCA1 + breast cancer family. BMC Cancer 14:342

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wen H, Kim YC, Snyder C, Xiao F, Fleissner EA, Becirovic D, Luo J, Downs B, Sherman S, Cowan KH, Lynch HT, Wang SM (2014) Family-specific, novel, deleterious germline variants provide a rich source to identify genetic predispositions for BRCAx familial breast cancer. BMC Cancer 14:470

    Article  PubMed Central  PubMed  Google Scholar 

  12. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9:357–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  PubMed Central  PubMed  Google Scholar 

  15. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1092 human genomes. Nature 491:56–65

  16. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(W1):W452–W457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cao AY, Huang J, Hu Z, Li WF, Ma ZL, Tang LL, Zhang B, Su FX, Zhou J, Di GH, Shen KW, Wu J, Lu JS, Luo JM, Yuan WT, Shen ZZ, Huang W, Shao ZM (2009) The prevalence of PALB2 germline mutations in BRCA1/BRCA2 negative Chinese women with early onset breast cancer or affected relatives. Breast Cancer Res Treat 114(3):457–462

    Article  CAS  PubMed  Google Scholar 

  19. Panoutsopoulou K, Tachmazidou I, Zeggini E (2013) In search of low-frequency and rare variants affecting complex traits. Hum Mol Genet 22(R1):R16–R21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, Neuhausen SL, John EM, Andrulis IL, Terry MB, Daly M, Buys S, Le Calvez-Kelm F, Lonie A, Pope BJ, Tsimiklis H, Voegele C, Hilbers FM, Hoogerbrugge N, Barroso A, Osorio A, Breast Cancer Family Registry, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, Giles GG, Devilee P, Benitez J, Hopper JL, Tavtigian SV, Goldgar DE, Southey MC (2012) Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet 90:734–739

  21. Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DY, Tothill RW, Thorne H, kConFab, Barnes DR, Li J, Ellul J, Philip GK, Antill YC, James PA, Trainer AH, Mitchell G, Campbell IG (2012) Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet 8:e1002894

  22. Snape K, Ruark E, Tarpey P, Renwick A, Turnbull C, Seal S, Murray A, Hanks S, Douglas J, Stratton MR, Rahman N (2012) Predisposition gene identification in common cancers by exome sequencing: insights from familial breast cancer. Breast Cancer Res Treat 134:429–433

    Article  PubMed Central  PubMed  Google Scholar 

  23. Gracia-Aznarez FJ, Fernandez V, Pita G, Peterlongo P, Dominguez O, de la Hoya M, Duran M, Osorio A, Moreno L, Gonzalez-Neira A, Rosa-Rosa JM, Sinilnikova O, Mazoyer S, Hopper J, Lazaro C, Southey M, Odefrey F, Manoukian S, Catucci I, Caldes T, Lynch HT, Hilbers FS, van Asperen CJ, Vasen HF, Goldgar D, Radice P, Devilee P, Benitez J (2013) Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles. PLoS One 8:e55681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hilbers FS, Meijers CM, Laros JF, van Galen M, Hoogerbrugge N, Vasen HF, Nederlof PM, Wijnen JT, van Asperen CJ, Devilee P (2013) Exome sequencing of germline DNA from non-BRCA1/2 familial breast cancer cases selected on the basis of aCGH tumor profiling. PLoS One 8:e55734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Guo Y, Long J, He J, Li CI, Cai Q, Shu XO, Zheng W, Li C (2012) Exome sequencing generates high quality data in non-target regions. BMC Genom 13:194

    Article  CAS  Google Scholar 

  26. The Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  PubMed Central  Google Scholar 

  27. COMPLEXO, Southey MC, Park DJ, Nguyen-Dumont T, Campbell I, Thompson E, Trainer AH, Chenevix-Trench G, Simard J, Dumont M, Soucy P, Thomassen M, Jønson L, Pedersen IS, Hansen TV, Nevanlinna H, Khan S, Sinilnikova O, Mazoyer S, Lesueur F, Damiola F, Schmutzler R, Meindl A, Hahnen E, Dufault MR, Chris Chan T, Kwong A, Barkardóttir R, Radice P, Peterlongo P, Devilee P, Hilbers F, Benitez J, Kvist A, Törngren T, Easton D, Hunter D, Lindstrom S, Kraft P, Zheng W, Gao YT, Long J, Ramus S, Feng BJ, Weitzel JN, Nathanson K, Offit K, Joseph V, Robson M, Schrader K, Wang S, Kim YC, Lynch H, Snyder C, Tavtigian S, Neuhausen S, Couch FJ, Goldgar DE (2013) COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration. Breast Cancer Res 15(3):402

Download references

Acknowledgments

The authors acknowledge the Breast Cancer Collaborative Registry (BCCR), developed and maintained by the University of Nebraska Medical Center (UNMC) Biomedical Informatics Core at the Fred & Pamela Buffett Cancer Center. The study was supported by a pilot grant from the UNMC Fred & Pamela Buffett Cancer Center, an NIH Grant 1R21CA180008 (SMW), an overseas study scholarship [sponsored by China Scholarship Council (FX)], the Charles F. and Mary C. Heider Chair in Cancer Research (HL), and revenue from Nebraska cigarette taxes awarded to Creighton University by the Nebraska Department of Health and Human Services. The funding bodies play no roles in design, collection, analysis, and interpretation of data. The authors kindly thank Melody A. Montgomery at the University of Nebraska Medical Center (UNMC) Research Editorial Office for the professional editing of this manuscript.

Conflict of interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henry T. Lynch or San Ming Wang.

Additional information

Bradley Downs and Yeong C. Kim have contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downs, B., Kim, Y.C., Xiao, F. et al. Two PALB2 germline mutations found in both BRCA1+ and BRCAx familial breast cancer. Breast Cancer Res Treat 151, 219–224 (2015). https://doi.org/10.1007/s10549-015-3358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3358-7

Keywords

Navigation