Skip to main content
Log in

Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer

Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The purpose of this study aimed to investigate the clinicopathologic characteristics of breast cancer according to its cancer-associated fibroblast (CAF) phenotype. Immunohistochemistry staining of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER-2), Ki-67, podoplanin, prolyl 4-hydroxylase, fibroblast activation protein alpha (FAPα), S100A4, platelet-derived growth factor receptor alpha (PDGFRα), PDGFRβ, and chondroitin sulfate proteoglycan (NG2) was performed on tissue microarray consisting of 642 breast cancer cases. Samples were categorized into luminal A, luminal B, HER-2, or triple-negative breast cancer (TNBC) according to immunohistochemical results, whereas tumor stroma was classified into desmoplastic, sclerotic, normal-like, or inflammatory type based on histological findings. Expression of CAF-related proteins in the stroma differed depending on breast cancer molecular subtypes. All CAF-related protein expression was high (p < 0.05) in HER-2 type, whereas in luminal A, the expression of FAPα, PDGFα, PDGFβ, and NG2 was low, and in TNBC, the expression of podoplanin, prolyl 4-hydroxylase, and S100A4 was low. In the stromal component, CAF-related protein expression differed according to stromal phenotype (p < 0.001). The desmoplastic type showed high expression of podoplanin, prolyl 4-hydroxylase, S100A4, PDGFRα, and PDGFRβ, whereas the sclerotic type exhibited low expression of FAPα, PDGFα, PDGFβ, and NG2. The inflammatory type had high expression of FAPα and NG2 with low podoplanin, while normal-like type showed low expression of prolyl 4-hydroxylase and S100A4. Our results suggested that differential CAF-related protein expression depended on the molecular subtypes and stromal histologic features of breast cancer, indicating that in the future, this system could potentially use these markers for prognosis prediction and targeted therapy of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Franco OE, Shaw AK, Strand DW et al (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1):33–39. doi:10.1016/j.semcdb.2009.10.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mueller MM, Fusenig NE (2004) Friends or foes–bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4(11):839–849. doi:10.1038/nrc1477

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. doi:10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  4. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337. doi:10.1038/nature03096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mueller L, Goumas FA, Affeldt M et al (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171(5):1608–1618. doi:10.2353/ajpath.2007.060661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pavlides S, Whitaker-Menezes D, Castello-Cros R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001

    Article  CAS  PubMed  Google Scholar 

  7. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. doi:10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  8. Muerkoster S, Wegehenkel K, Arlt A et al (2004) Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res 64(4):1331–1337

    Article  PubMed  Google Scholar 

  9. Fearon DT (2014) The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res 2(3):187–193. doi:10.1158/2326-6066.cir-14-0002

    Article  CAS  PubMed  Google Scholar 

  10. Ostman A (2014) Cancer-associated fibroblasts: recent developments and emerging challenges. Semin Cancer Biol 25:1–2. doi:10.1016/j.semcancer.2014.02.004

    Article  PubMed  Google Scholar 

  11. Desmouliere A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48(5–6):509–517. doi:10.1387/ijdb.041802ad

    Article  CAS  PubMed  Google Scholar 

  12. De Wever O, Nguyen QD, Van Hoorde L et al (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18(9):1016–1018. doi:10.1096/fj.03-1110fje

    PubMed  Google Scholar 

  13. Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646

    Article  CAS  PubMed  Google Scholar 

  14. Pietras K, Sjoblom T, Rubin K et al (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443

    Article  CAS  PubMed  Google Scholar 

  15. Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330(6005):827–830. doi:10.1126/science.1195300

    Article  CAS  PubMed  Google Scholar 

  16. Kawase A, Ishii G, Nagai K et al (2008) Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int J Cancer 123(5):1053–1059. doi:10.1002/ijc.23611

    Article  CAS  PubMed  Google Scholar 

  17. Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107(46):20009–20014. doi:10.1073/pnas.1013805107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cortez E, Roswall P, Pietras K (2014) Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol 25:3–9. doi:10.1016/j.semcancer.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  19. Scanlan MJ, Raj BK, Calvo B et al (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 91(12):5657–5661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee HO, Mullins SR, Franco-Barraza J et al (2011) FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. BMC Cancer 11:245. doi:10.1186/1471-2407-11-245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. O’Connell JT, Sugimoto H, Cooke VG et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci USA 108(38):16002–16007. doi:10.1073/pnas.1109493108

    Article  PubMed Central  PubMed  Google Scholar 

  22. Zhang J, Chen L, Xiao M et al (2011) FSP1+ fibroblasts promote skin carcinogenesis by maintaining MCP-1-mediated macrophage infiltration and chronic inflammation. Am J Pathol 178(1):382–390. doi:10.1016/j.ajpath.2010.11.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang J, Chen L, Liu X et al (2013) Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res 73(9):2770–2781. doi:10.1158/0008-5472.can-12-3022

    Article  CAS  PubMed  Google Scholar 

  24. Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34. doi:10.1016/j.ccr.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  25. Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147. doi:10.1016/j.ccr.2009.12.041

    Article  CAS  PubMed  Google Scholar 

  26. Gao MQ, Kim BG, Kang S et al (2013) Human breast cancer-associated fibroblasts enhance cancer cell proliferation through increased TGF-alpha cleavage by ADAM17. Cancer Lett 336(1):240–246. doi:10.1016/j.canlet.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  27. Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13(5):394–406. doi:10.1016/j.ccr.2008.03.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. doi:10.1038/nature10138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mueller KL, Madden JM, Zoratti GL et al (2012) Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 14(4):R104. doi:10.1186/bcr3224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi:10.1038/nm1764

    Article  CAS  PubMed  Google Scholar 

  31. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  CAS  PubMed  Google Scholar 

  32. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795. doi:10.1200/jco.2009.25.6529

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25(1):118–145. doi:10.1200/jco.2006.09.2775

    Article  CAS  PubMed  Google Scholar 

  34. Henry LR, Lee HO, Lee JS et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13(6):1736–1741. doi:10.1158/1078-0432.ccr-06-1746

    Article  CAS  PubMed  Google Scholar 

  35. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. doi:10.1093/annonc/mdr304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi:10.1038/35021093

    Article  CAS  PubMed  Google Scholar 

  37. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530a

    Article  Google Scholar 

  39. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423. doi:10.1073/pnas.0932692100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200(4):429–447. doi:10.1002/path.1398

    Article  PubMed  Google Scholar 

  41. Tchou J, Kossenkov AV, Chang L et al (2012) Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics 5:39. doi:10.1186/1755-8794-5-39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ahn S, Cho J, Sung J et al (2012) The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumour Biol 33(5):1573–1580. doi:10.1007/s13277-012-0411-6

    Article  PubMed  Google Scholar 

  43. Shao ZM, Nguyen M, Barsky SH (2000) Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19(38):4337–4345. doi:10.1038/sj.onc.1203785

    Article  CAS  PubMed  Google Scholar 

  44. Zhai X, Zhu H, Wang W et al (2014) Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC. Med Oncol 31(6):970. doi:10.1007/s12032-014-0970-z

    Article  PubMed  Google Scholar 

  45. Chong HI, Lee JH, Yoon MS et al (2014) Prognostic value of cytoplasmic expression of S100A4 protein in endometrial carcinoma. Oncol Rep 31(6):2701–2707. doi:10.3892/or.2014.3149

    CAS  PubMed  Google Scholar 

  46. Bai H, Qian JL, Han BH (2014) S100A4 is an independent prognostic factor for patients with lung cancer: a meta-analysis. Genet Test Mol Biomark 18(5):371–374. doi:10.1089/gtmb.2013.0471

    Article  CAS  Google Scholar 

  47. Tsukamoto N, Egawa S, Akada M et al (2013) The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas 42(6):1027–1033. doi:10.1097/MPA.0b013e31828804e7

    Article  CAS  PubMed  Google Scholar 

  48. Chuang WY, Yeh CJ, Chao YK et al (2014) Concordant podoplanin expression in cancer-associated fibroblasts and tumor cells is an adverse prognostic factor in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7(8):4847–4856

    PubMed Central  PubMed  Google Scholar 

  49. Preuss SF, Anagiotos A, Seuthe IM et al (2014) Expression of podoplanin and prognosis in oropharyngeal cancer. Eur Arch Otorhinolaryngol. doi:10.1007/s00405-014-3105-4

    Google Scholar 

  50. Yuan D, Liu B, Liu K et al (2013) Overexpression of fibroblast activation protein and its clinical implications in patients with osteosarcoma. J Surg Oncol 108(3):157–162. doi:10.1002/jso.23368

    Article  CAS  PubMed  Google Scholar 

  51. Shi M, Yu DH, Chen Y et al (2012) Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol 18(8):840–846. doi:10.3748/wjg.v18.i8.840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Moorman AM, Vink R, Heijmans HJ et al (2012) The prognostic value of tumour-stroma ratio in triple-negative breast cancer. Eur J Surg Oncol 38(4):307–313. doi:10.1016/j.ejso.2012.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (1420080). This study was supported by a faculty research grant from Yonsei University College of Medicine for 2013 (6-2014-0131).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ja Seung Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Kim, H.M. & Koo, J.S. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat 149, 727–741 (2015). https://doi.org/10.1007/s10549-015-3291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3291-9

Keywords

Navigation