Advertisement

Breast Cancer Research and Treatment

, Volume 149, Issue 3, pp 607–618 | Cite as

The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells

  • Jillian E. Koziel
  • Brittney-Shea HerbertEmail author
Preclinical study

Abstract

Cancer stem cells (CSCs) are thought to be responsible for tumor progression, metastasis, and recurrence. HER2 overexpression is associated with increased CSCs, which may explain the aggressive phenotype and increased likelihood of recurrence for HER2+ breast cancers. Telomerase is reactivated in tumor cells, including CSCs, but has limited activity in normal tissues, providing potential for telomerase inhibition in anti-cancer therapy. The purpose of this study was to investigate the effects of a telomerase antagonistic oligonucleotide, imetelstat (GRN163L), on CSC and non-CSC populations of HER2+ breast cancer cell lines. The effects of imetelstat on CSC populations of HER2+ breast cancer cells were measured by ALDH activity and CD44/24 expression by flow cytometry as well as mammosphere assays for functionality. Combination studies in vitro and in vivo were utilized to test for synergism between imetelstat and trastuzumab. Imetelstat inhibited telomerase activity in both subpopulations. Moreover, imetelstat alone and in combination with trastuzumab reduced the CSC fraction and inhibited CSC functional ability, as shown by decreased mammosphere counts and invasive potential. Tumor growth rate was slower in combination-treated mice compared to either drug alone. Additionally, there was a trend toward decreased CSC marker expression in imetelstat-treated xenograft cells compared to vehicle control. Furthermore, the observed decrease in CSC marker expression occurred prior to and after telomere shortening, suggesting that imetelstat acts on the CSC subpopulation in telomere length-dependent and -independent mechanisms. Our study suggests addition of imetelstat to trastuzumab may enhance the effects of HER2 inhibition therapy, especially in the CSC population.

Keywords

Telomerase Breast cancer HER2+ Cancer stem cells Trastuzumab 

Notes

Acknowledgments

We would like to thank the members of the Herbert Lab for helpful discussion preparing this manuscript. We thank Geron Corporation for generously providing the imetelstat and sense oligonucleotides, Dr. Francisco Esteva for kindly sharing the SKBR3 and SKBR3-R cell lines, Dr. Harikrishna Nakshatri for kindly sharing the TMD-231 cell line, Dr. Harlan Shannon for help with the combination studies, Dr. George Sandusky for help with histology, Dr. Hiromi Tanaka for help with TeloTAGGG analysis, the Indiana University Simon Cancer Center (IUSCC) flow cytometry core facility for their services and expertise, and the IUSCC infusion pharmacy for generously providing the trastuzumab. This investigator was supported, in part, by the National Institutes of Health, National Research Service Award Number T32 HL007910- Basic Science Studies on Gene Therapy of Blood Diseases. This work was also supported in part by a Grant from Susan G. Komen for the Cure®, an IUSCC Cancer Biology Training Program Predoctoral Fellowship, a grant from the Mary Kay Ash Charitable Foundation, and the Indiana Genomics Initiative (INGEN; supported in part by the Lilly Endowment, Inc). We are also grateful for the philanthropic support made to the Herbert laboratory through IUSCC in memory of Carol Herbert.

Conflict of interest

Imetelstat and sense oligonucleotides were generously provided by the Geron Corporation. The authors declare they have no other conflicts of interest.

Ethical standards

The authors declare that the experiments performed comply with the current laws.

Supplementary material

10549_2015_3270_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 28 kb)
10549_2015_3270_MOESM2_ESM.tiff (279 kb)
Supplementary material 2 (TIFF 279 kb)
10549_2015_3270_MOESM3_ESM.tiff (89 kb)
Supplementary material 3 (TIFF 90 kb)
10549_2015_3270_MOESM4_ESM.tiff (5.6 mb)
Supplementary material 4 (TIFF 5698 kb)
10549_2015_3270_MOESM5_ESM.tiff (29.1 mb)
Supplementary material 5 (TIFF 29779 kb)

References

  1. 1.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. doi: 10.1073/pnas.0530291100 CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Cho RW, Clarke MF (2008) Recent advances in cancer stem cells. Curr Opin Genet Dev 18(1):48–53. doi: 10.1016/j.gde.2008.01.017 CrossRefPubMedGoogle Scholar
  3. 3.
    Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66 (4):1883–1890; discussion 1895–1886. doi: 10.1158/0008-5472.can-05-3153
  4. 4.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi: 10.1038/nrc2499 CrossRefPubMedGoogle Scholar
  5. 5.
    Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12(19):5615–5621. doi: 10.1158/1078-0432.CCR-06-0169 CrossRefPubMedGoogle Scholar
  6. 6.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65(13):5506–5511. doi: 10.1158/0008-5472.can-05-0626 CrossRefPubMedGoogle Scholar
  7. 7.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679. doi: 10.1093/jnci/djn123 CrossRefPubMedGoogle Scholar
  8. 8.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44 + breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785. doi: 10.1093/jnci/djj495 CrossRefPubMedGoogle Scholar
  9. 9.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567. doi: 10.1016/j.stem.2007.08.014 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15(6):2010–2021. doi: 10.1158/1078-0432.ccr-08-1327 CrossRefPubMedGoogle Scholar
  11. 11.
    Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27(47):6120–6130. doi: 10.1038/onc.2008.207 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH, Cristofanilli M, Frye DK, Smith TL, Hunt KK, Singletary SE, Sahin AA, Ewer MS, Buchholz TA, Berry D, Hortobagyi GN (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23(16):3676–3685. doi: 10.1200/JCO.2005.07.032 CrossRefPubMedGoogle Scholar
  13. 13.
    Korkaya H, Wicha MS (2013) HER2 and breast cancer stem cells: more than meets the eye. Cancer Res 73(12):3489–3493. doi: 10.1158/0008-5472.can-13-0260 CrossRefPubMedGoogle Scholar
  14. 14.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  15. 15.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science (New York, NY) 266(5193):2011–2015CrossRefGoogle Scholar
  16. 16.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science (New York, NY) 279(5349):349–352CrossRefGoogle Scholar
  17. 17.
    Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14(4):501–513CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (1999) Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13(18):2388–2399CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5(7):577–584. doi: 10.1038/nrd2081 CrossRefPubMedGoogle Scholar
  20. 20.
    Gryaznov SM, Jackson S, Dikmen G, Harley C, Herbert BS, Wright WE, Shay JW (2007) Oligonucleotide conjugate GRN163L targeting human telomerase as potential anticancer and antimetastatic agent. Nucleosides, Nucleotides Nucleic Acids 26(10–12):1577–1579. doi: 10.1080/15257770701547271 CrossRefPubMedGoogle Scholar
  21. 21.
    Herbert BS, Pongracz K, Shay JW, Gryaznov SM (2002) Oligonucleotide N3′ → P5′ phosphoramidates as efficient telomerase inhibitors. Oncogene 21(4):638–642. doi: 10.1038/sj.onc.1205064 CrossRefPubMedGoogle Scholar
  22. 22.
    Asai A, Oshima Y, Yamamoto Y, Uochi TA, Kusaka H, Akinaga S, Yamashita Y, Pongracz K, Pruzan R, Wunder E, Piatyszek M, Li S, Chin AC, Harley CB, Gryaznov S (2003) A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 63(14):3931–3939PubMedGoogle Scholar
  23. 23.
    Herbert BS, Gellert GC, Hochreiter A, Pongracz K, Wright WE, Zielinska D, Chin AC, Harley CB, Shay JW, Gryaznov SM (2005) Lipid modification of GRN163, an N3′ → P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 24(33):5262–5268. doi: 10.1038/sj.onc.1208760 CrossRefPubMedGoogle Scholar
  24. 24.
    Dikmen ZG, Gellert GC, Jackson S, Gryaznov S, Tressler R, Dogan P, Wright WE, Shay JW (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65(17):7866–7873. doi: 10.1158/0008-5472.can-05-1215 PubMedGoogle Scholar
  25. 25.
    Dikmen ZG, Wright WE, Shay JW, Gryaznov SM (2008) Telomerase targeted oligonucleotide thio-phosphoramidates in T24-luc bladder cancer cells. J Cell Biochem 104(2):444–452. doi: 10.1002/jcb.21635 CrossRefPubMedGoogle Scholar
  26. 26.
    Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S, Harley CB, Rudolph KL (2005) Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology (Baltimore, Md) 42 (5):1127–1136. doi: 10.1002/hep.20822
  27. 27.
    Goldblatt EM, Erickson PA, Gentry ER, Gryaznov SM, Herbert BS (2009) Lipid-conjugated telomerase template antagonists sensitize resistant HER2-positive breast cancer cells to trastuzumab. Breast Cancer Res Treat 118(1):21–32. doi: 10.1007/s10549-008-0201-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Goldblatt EM, Gentry ER, Fox MJ, Gryaznov SM, Shen C, Herbert BS (2009) The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel. Mol Cancer Ther 8(7):2027–2035. doi: 10.1158/1535-7163.mct-08-1188 CrossRefPubMedGoogle Scholar
  29. 29.
    Gomez-Millan J, Goldblatt EM, Gryaznov SM, Mendonca MS, Herbert BS (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67(3):897–905. doi: 10.1016/j.ijrobp.2006.09.038 CrossRefPubMedGoogle Scholar
  30. 30.
    Hochreiter AE, Xiao H, Goldblatt EM, Gryaznov SM, Miller KD, Badve S, Sledge GW, Herbert BS (2006) Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12(10):3184–3192. doi: 10.1158/1078-0432.ccr-05-2760 CrossRefPubMedGoogle Scholar
  31. 31.
    Shammas MA, Koley H, Bertheau RC, Neri P, Fulciniti M, Tassone P, Blotta S, Protopopov A, Mitsiades C, Batchu RB, Anderson KC, Chin A, Gryaznov S, Munshi NC (2008) Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo. Leukemia 22(7):1410–1418. doi: 10.1038/leu.2008.81 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Burchett KM, Yan Y, Ouellette MM (2014) Telomerase inhibitor Imetelstat (GRN163L) limits the lifespan of human pancreatic cancer cells. PLoS ONE 9(1):e85155. doi: 10.1371/journal.pone.0085155 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Ju Z, Rudolph KL (2006) Telomeres and telomerase in cancer stem cells. Eur J Cancer (Oxford, England : 1990) 42 (9):1197–1203. doi: 10.1016/j.ejca.2006.01.040
  34. 34.
    Castelo-Branco P, Zhang C, Lipman T, Fujitani M, Hansford L, Clarke I, Harley CB, Tressler R, Malkin D, Walker E, Kaplan DR, Dirks P, Tabori U (2011) Neural tumor-initiating cells have distinct telomere maintenance and can be safely targeted for telomerase inhibition. Clin Cancer Res 17(1):111–121. doi: 10.1158/1078-0432.CCR-10-2075 CrossRefPubMedGoogle Scholar
  35. 35.
    Joseph I, Tressler R, Bassett E, Harley C, Buseman CM, Pattamatta P, Wright WE, Shay JW, Go NF (2010) The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res 70(22):9494–9504. doi: 10.1158/0008-5472.can-10-0233 CrossRefPubMedGoogle Scholar
  36. 36.
    Marian CO, Wright WE, Shay JW (2010) The effects of telomerase inhibition on prostate tumor-initiating cells. Int J Cancer 127(2):321–331. doi: 10.1002/ijc.25043 PubMedGoogle Scholar
  37. 37.
    Marian CO, Cho SK, McEllin BM, Maher EA, Hatanpaa KJ, Madden CJ, Mickey BE, Wright WE, Shay JW, Bachoo RM (2010) The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth. Clin Cancer Res 16(1):154–163. doi: 10.1158/1078-0432.ccr-09-2850 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Ruden M, Puri N (2013) Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 39(5):444–456. doi: 10.1016/j.ctrv.2012.06.007 CrossRefPubMedGoogle Scholar
  39. 39.
    Nahta R, Esteva FJ (2004) In vitro effects of trastuzumab and vinorelbine in trastuzumab-resistant breast cancer cells. Cancer Chemother Pharmacol 53(2):186–190. doi: 10.1007/s00280-003-0728-3 CrossRefPubMedGoogle Scholar
  40. 40.
    Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24):21631–21638. doi: 10.1074/jbc.M300609200 CrossRefPubMedGoogle Scholar
  41. 41.
    Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J, Brown M, Viens P, Xerri L, Bertucci F, Stassi G, Dontu G, Birnbaum D, Wicha MS (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313. doi: 10.1158/0008-5472.can-08-2741 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25. doi: 10.1186/bcr1982 CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    O’Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O’Donovan N, Slamon DJ (2010) Activated phosphoinositide 3-kinase/AKT signaling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther 9(6):1489–1502. doi: 10.1158/1535-7163.mct-09-1171 CrossRefPubMedGoogle Scholar
  44. 44.
    Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R Jr, Badve S, Nakshatri H (2006) CD44 +/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59. doi: 10.1186/bcr1610 CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Chen D, Bhat-Nakshatri P, Goswami C, Badve S, Nakshatri H (2013) ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res 73(18):5821–5833. doi: 10.1158/0008-5472.CAN-13-1080 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi: 10.1016/j.cell.2008.03.027 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Brennan SK, Wang Q, Tressler R, Harley C, Go N, Bassett E, Huff CA, Jones RJ, Matsui W (2010) Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS ONE. doi: 10.1371/journal.pone.0012487 Google Scholar
  48. 48.
    Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi: 10.1016/j.cell.2009.06.034 CrossRefPubMedGoogle Scholar
  49. 49.
    Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3(8):e2888. doi: 10.1371/journal.pone.0002888 CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27(20):2192–2206. doi: 10.1101/gad.225334.113 CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Mender I, Senturk S, Ozgunes N, Akcali KC, Kletsas D, Gryaznov S, Can A, Shay JW, Dikmen ZG (2013) Imetelstat (a telomerase antagonist) exerts offtarget effects on the cytoskeleton. Int J Oncol 42(5):1709–1715. doi: 10.3892/ijo.2013.1865 PubMedGoogle Scholar
  52. 52.
    Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A, Hu GF (2008) Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68(24):10377–10386. doi: 10.1158/0008-5472.can-08-1444 CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, Hong S, Adams A, D’Angelo R, Ginestier C, Charafe-Jauffret E, Clouthier SG, Birnbaum D, Wong ST, Zhan M, Chang JC, Wicha MS (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem cell reports 2(1):78–91. doi: 10.1016/j.stemcr.2013.11.009 CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71(15):5317–5326. doi: 10.1158/0008-5472.CAN-11-1059 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisUSA
  3. 3.Indiana University Melvin and Bren Simon Cancer CenterIndianapolisUSA
  4. 4.Indiana Institute for Personalized MedicineIndianapolisUSA

Personalised recommendations