Skip to main content

Advertisement

Log in

Small molecule 1′-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Signal transducer and activator of transcription 3 (STAT3) is implicated breast cancer metastasis and represents a potential target for developing new anti-tumor metastasis drugs. The purpose of this study is to investigate whether the natural agent 1′-acetoxychavicol acetate (ACA), derived from the rhizomes and seeds of Languas galanga, could suppress breast cancer metastasis by targeting STAT3 signaling pathway. ACA was examined for its effects on breast cancer migration/invasion and metastasis using Transwell assays in vitro and breast cancer skeletal metastasis mouse model in vivo (n = 10 mice per group). The inhibitory effect of ACA on cellular STAT3 signaling pathway was investigated by series of biochemistry analysis. The chavicol preferentially suppressed cancer cell migration and invasion, and this activity was superior to its cytotoxic effects. ACA suppressed both constitutive and interleukin-6-inducible STAT3 activation and diminished the accumulation of STAT3 in the nucleus and its DNA-binding activity. More importantly, ACA treatment led to significant up-regulation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), and the ACA-induced depression of cancer cell migration and STAT3 signaling could be apparently reversed by blockade of SHP-1. Matrix metalloproteinase (MMP)-2 and -9, gene products of STAT3 that regulate cell invasion, were specifically suppressed by ACA. In tumor metastasis model, ACA potently inhibited the human breast cancer cell-induced osteolysis, and had little apparent in vivo toxicity at the test concentrations. ACA is a novel drug candidate for the inhibition of tumor metastasis through interference with the SHP-1/STAT3/MMPs signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  2. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  3. Redig AJ, McAllister SS (2013) Breast cancer as a systemic disease: a view of metastasis. J Intern Med 274(2):113–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  CAS  PubMed  Google Scholar 

  5. Wang TH, Niu GL, Kortylewski M, Burdelya L, Shain K, Zhang SM, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by STAT-3 signaling in tumor cells. Nat Med 10(1):48–54

    Article  PubMed  Google Scholar 

  6. Huang SY (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res 13(5):1362–1366

    Article  CAS  PubMed  Google Scholar 

  7. Devarajan E, Huang S (2009) STAT3 as a central regulator of tumor metastases. Curr Mol Med 9(5):626–633

    Article  CAS  PubMed  Google Scholar 

  8. Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749

    Article  CAS  PubMed  Google Scholar 

  9. Knoops L, Hornakova T, Royer Y, Constantinescu SN, Renauld JC (2008) JAK kinases overexpression promotes in vitro cell transformation. Oncogene 27(11):1511–1519

    Article  CAS  PubMed  Google Scholar 

  10. Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16(12):6985–6992

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S (2004) STAT3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23(20):3550–3560

    Article  CAS  PubMed  Google Scholar 

  13. Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I, Bromberg JF (2004) Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by STAT3-C. Proc Natl Acad Sci USA 101(29):10602–10607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A (2014) Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta 1845 2:136–154

    Google Scholar 

  15. Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127(2):282–292

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Rajendran P, Ong TH, Chen L, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Hui KM, Sethi G (2011) Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin Cancer Res 17(6):1425–1439

    Article  CAS  PubMed  Google Scholar 

  17. Jung JE, Kim HS, Lee CS, Park DH, Kim YN, Lee MJ, Lee JW, Park JW, Kim MS, Ye SK, Chung MH (2007) Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28(8):1780–1787

    Article  CAS  PubMed  Google Scholar 

  18. Ohnishi M, Tanaka T, Makita H, Kawamori T, Mori H, Satoh K, Hara A, Murakami A, Ohigashi H, Koshimizu K (1996) Chemopreventive effect of a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate, on rat oral carcinogenesis. Jpn J Cancer Res 87(4):349–356

    Article  CAS  PubMed  Google Scholar 

  19. Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H (1996) 1′-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology 53(5):386–391

    Article  CAS  PubMed  Google Scholar 

  20. Ohata T, Fukuda K, Murakami A, Ohigashi H, Sugimura T, Wakabayashi K (1998) Inhibition by 1′-acetoxychavicol acetate of lipopolysaccharide- and interferon-gamma-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. Carcinogenesis 19(6):1007–1012

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka T, Kawabata K, Kakumoto M, Makita H, Matsunaga K, Mori H, Satoh K, Hara A, Murakami A, Koshimizu K, Ohigashi H (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate. Jpn J Cancer Res 88(9):821–830

    Article  CAS  PubMed  Google Scholar 

  22. Kawabata K, Tanaka T, Yamamoto T, Ushida J, Hara A, Murakami A, Koshimizu K, Ohigashi H, Stoner GD, Mori H (2000) Suppression of N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis by dietary feeding of 1′-acetoxychavicol acetate. Jpn J Cancer Res 91(2):148–155

    Article  CAS  PubMed  Google Scholar 

  23. Kato R, Matsui-Yuasa I, Azuma H, Kojima-Yuasa A (2014) The synergistic effect of 1′-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells. Chem Biol Interact 212C:1–10

    Article  Google Scholar 

  24. Wang H, Shen L, Li X, Sun M (2013) MicroRNAs contribute to the anticancer effect of 1′-acetoxychavicol acetate in human head and neck squamous cell carcinoma cell line HN4. Biosci Biotechnol Biochem 77(12):2348–2355

    Article  CAS  PubMed  Google Scholar 

  25. Williams M, Tietzel I, Quick QA (2013) 1′-Acetoxychavicol acetate promotes caspase 3-activated glioblastoma cell death by overcoming enhanced cytokine expression. Oncol Lett 5(6):1968–1972

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Moffatt J, Kennedy DO, Kojima A, Hasuma T, Yano Y, Otani S, Murakami A, Koshimizu K, Ohigashi H, Matsui-Yuasa I (2002) Involvement of protein tyrosine phosphorylation and reduction of cellular sulfhydryl groups in cell death induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumor cells. Chem Biol Interact 139(2):215–230

    Article  CAS  PubMed  Google Scholar 

  27. Ito K, Nakazato T, Xian MJ, Yamada T, Hozumi N, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2005) 1′-acetoxychavicol acetate is a novel nuclear factor kappa B inhibitor with significant activity against multiple myeloma in vitro and in vivo. Cancer Res 65(10):4417–4424

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa H, Takada Y, Murakami A, Aggarwal BB (2005) Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products. J Immunol 174(11):7383–7392

    Article  CAS  PubMed  Google Scholar 

  29. Ito K, Nakazato T, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2005) 1′-Acetoxychavicol acetate induces apoptosis of myeloma cells via induction of TRAIL. Biochem Biophys Res Commun 338(4):1702–1710

    Article  CAS  PubMed  Google Scholar 

  30. Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, Zhang J, Qu W, Aggarwal BB, Liu M (2011) 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 32(6):904–912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M (2009) Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 69(14):5893–5900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Li C, Yang Z, Zhai C, Qiu W, Li D, Yi Z, Wang L, Tang J, Qian M, Luo J, Liu M (2010) Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappa B signaling pathway. Mol Cancer 9:73–85

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, Yi Z, Chen Y, Pang X, Liu M (2012) Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther 11(2):277–287

    Article  CAS  PubMed  Google Scholar 

  34. Franke-Fayard B, Waters AP, Janse CJ (2006) Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc 1(1):476–485

    Article  CAS  PubMed  Google Scholar 

  35. Ihle JN (1996) STATs: signal transducers and activators of transcription. Cell 84(3):331–334

    Article  CAS  PubMed  Google Scholar 

  36. Schreiner SJ, Schiavone AP, Smithgall TE (2002) Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. J Biol Chem 277(47):45680–45687

    Article  CAS  PubMed  Google Scholar 

  37. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556

    Article  CAS  PubMed  Google Scholar 

  38. Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective signal transducers and activators of transcription (STAT) DNA binding and transcriptional activity. Proc Natl Acad Sci USA 92(7):3041–3045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R (2006) Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK + anaplastic large-cell lymphoma. Blood 108(8):2796–2803

    Article  CAS  PubMed  Google Scholar 

  40. Sandur SK, Pandey MK, Sung B, Aggarwal BB (2010) 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization. Mol Cancer Res 8(1):107–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wu C, Sun M, Liu L, Zhou GW (2003) The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 306:1–12

    Article  CAS  PubMed  Google Scholar 

  42. Zhu J, Jia X, Xiao G, Kang Y, Partridge NC, Qin L (2007) EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J Biol Chem 282(37):26656–26664

    Article  CAS  PubMed  Google Scholar 

  43. Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320

    Article  PubMed  Google Scholar 

  44. Bhutani M, Pathak AK, Nair AS, Kunnumakkara AB, Guha S, Sethi G, Aggarwal BB (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13(10):3024–3032

    Article  CAS  PubMed  Google Scholar 

  45. Bendell JC, Hong DS, Burris HA 3rd, Naing A, Jones SF, Falchook G, Bricmont P, Elekes A, Rock EP, Kurzrock R (2014) Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 74(1):125–130

    Article  CAS  PubMed  Google Scholar 

  46. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    Article  CAS  PubMed  Google Scholar 

  47. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, Massague J, Kang Y (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23(16):1882–1894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Orita S, Hirose M, Takahashi S, Imaida K, Ito N, Shudo K, Ohigashi H, Murakami A, Shirai T (2004) Modifying effects of 1′-acetoxychavicol acetate (ACA) and the novel synthetic retinoids Re-80, Am-580 and Am-55P in a two-stage carcinogenesis model in female rats. Toxicol Pathol 32(2):250–257

    Article  CAS  PubMed  Google Scholar 

  50. Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, Gu K, Shah V, Pei L, Zarbo RJ, McCauley L, Shi S, Chen S, Wang CY (2007) NF-kappa B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13(1):62–69

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Chenguang Program of Shanghai Municipal Education Commission (10CG25 to X. Pang), the National Natural Science Foundation of China (81101683 to X. Pang), the National Basic Research Program of China (2012CB910401 to M. Liu), and the Fundamental Research Funds for the Central Universities (78260029 to X. Pang).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufeng Pang.

Additional information

Jieqiong Wang and Li Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Chen, G. et al. Small molecule 1′-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway. Breast Cancer Res Treat 148, 279–289 (2014). https://doi.org/10.1007/s10549-014-3165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3165-6

Keywords

Navigation