Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice

An Erratum to this article was published on 18 February 2016


ErbB-2 has been implicated as a target for cancer-initiating cells in breast and other cancers. ErbB-2-directed peptide vaccines have been shown to be effective in prevention of spontaneous tumorigenesis of breast in neu transgenic mouse model, and cellular immunity is proposed as a mechanism for the anti-tumor efficacy. However, there has been no explanation as to how immunity suppresses tumorigenesis from the early stage carcinogenesis, when ErbB-2 expression in breast is low. Here, we investigated a peptide-based vaccine, which consists of two MHC class II epitopes derived from murine ErbB-2, to prevent the occurrence of spontaneous tumors in breast and assess immune impact on breast cancer stem cells. Female MMTV-PyMT transgenic mice were immunized with either ErbB-2 peptide vaccine, or a peptide from tetanus toxoid, or PBS in immune adjuvant. ErbB-2 peptides vaccine completely suppressed spontaneous breast tumors, and the efficacy was correlated with antigen-specific T-cell and antibody responses. In addition, immune serum from the mice of ErbB-2 vaccine group had an inhibitory effect on mammosphere-forming capacity and signaling through ErbB-2 and downstream Akt pathway in ErbB-2 overexpressing mouse mammary cancer cells. We provide evidence that multi-epitope class II peptides vaccine suppresses tumorigenesis of breast potentially by inhibiting the growth of cancer stem cells. We also suggest that a strategy of inducing strong immune responses using multi-epitope ErbB-2-directed helper vaccine might be useful in preventing breast cancer recurrence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Glinsky GV (2007) Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 3(1):79–93

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. doi:10.1158/0008-5472.CAN-06-2030

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978. doi:10.1073/pnas.0610117104

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  5. 5.

    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514. doi:10.1038/sj.cdd.4402283

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, Grossman RG, Heslop HE, Gottschalk S (2010) HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16(2):474–485. doi:10.1158/1078-0432.CCR-09-1322

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  8. 8.

    Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15(6):2010–2021. doi:10.1158/1078-0432.CCR-08-1327

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Paik S, Kim C, Wolmark N (2008) HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358(13):1409–1411. doi:10.1056/NEJMc0801440

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF, Quraishi AA, Ignatoski KW, Daignault S, Davis A, Hall CL, Palanisamy N, Heath AN, Tawakkol N, Luther TK, Clouthier SG, Chadwick WA, Day ML, Kleer CG, Thomas DG, Hayes DF, Korkaya H, Wicha MS (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73(5):1635–1646. doi:10.1158/0008-5472.CAN-12-3349

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  11. 11.

    Pupa SM, Bufalino R, Invernizzi AM, Andreola S, Rilke F, Lombardi L, Colnaghi MI, Menard S (1996) Macrophage infiltrate and prognosis in c-erbB-2-overexpressing breast carcinomas. J Clin Oncol 14(1):85–94

    CAS  PubMed  Google Scholar 

  12. 12.

    Pupa SM, Tagliabue E, Menard S, Anichini A (2005) HER-2: a biomarker at the crossroads of breast cancer immunotherapy and molecular medicine. J Cell Physiol 205(1):10–18. doi:10.1002/jcp.20387

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, Livingston RB et al (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54(1):16–20

    CAS  PubMed  Google Scholar 

  14. 14.

    Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA (1997) High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 15(11):3363–3367

    CAS  PubMed  Google Scholar 

  15. 15.

    Pupa SM, Menard S, Andreola S, Colnaghi MI (1993) Antibody response against the c-erbB-2 oncoprotein in breast carcinoma patients. Cancer Res 53(24):5864–5866

    CAS  PubMed  Google Scholar 

  16. 16.

    Disis ML, Gad E, Herendeen DR, Lai VP, Park KH, Cecil DL, O’Meara MM, Treuting PM, Lubet RA (2013) A multiantigen vaccine targeting neu, IGFBP-2, and IGF-IR prevents tumor progression in mice with preinvasive breast disease. Cancer Prev Res (Phila) 6(12):1273–1282. doi:10.1158/1940-6207.CAPR-13-0182

    Article  CAS  Google Scholar 

  17. 17.

    Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A, Disis ML (2006) Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177(3):1526–1533

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Park KH, Gad E, Goodell V, Dang Y, Wild T, Higgins D, Fintak P, Childs J, Dela Rosa C, Disis ML (2008) Insulin-like growth factor-binding protein-2 is a target for the immunomodulation of breast cancer. Cancer Res 68(20):8400–8409. doi:10.1158/0008-5472.CAN-07-5891

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  19. 19.

    Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126. doi:10.1016/S0002-9440(10)63568-7

    PubMed Central  Article  PubMed  Google Scholar 

  20. 20.

    Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E, Porcedda P, Boggio K, Smorlesi A, Lollini PL, Landuzzi L, Colombo MP, Giovarelli M, Musiani P, Forni G (2000) DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165(9):5133–5142

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Quaglino E, Iezzi M, Mastini C, Amici A, Pericle F, Di Carlo E, Pupa SM, De Giovanni C, Spadaro M, Curcio C, Lollini PL, Musiani P, Forni G, Cavallo F (2004) Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res 64(8):2858–2864

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E (2007) Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 67(3):1326–1334. doi:10.1158/0008-5472.CAN-06-3290

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  23. 23.

    Nanni P, Landuzzi L, Nicoletti G, De Giovanni C, Rossi I, Croci S, Astolfi A, Iezzi M, Di Carlo E, Musiani P, Forni G, Lollini PL (2004) Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J Immunol 173(4):2288–2296

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Brown CE, Starr R, Martinez C, Aguilar B, D’Apuzzo M, Todorov I, Shih CC, Badie B, Hudecek M, Riddell SR, Jensen MC (2009) Recognition and killing of brain tumor stem-like initiating cells by CD8 + cytolytic T cells. Cancer Res 69(23):8886–8893. doi:10.1158/0008-5472.CAN-09-2687

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  25. 25.

    Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F, Bruzzone MG, Finocchiaro G (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252. doi:10.1158/0008-5472.CAN-06-2048

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Xu Q, Liu G, Yuan X, Xu M, Wang H, Ji J, Konda B, Black KL, Yu JS (2009) Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27(8):1734–1740. doi:10.1002/stem.102

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, Coveler AL, Childs JS, Higgins DM, Fintak PA, dela Rosa C, Tietje K, Link J, Waisman J, Salazar LG (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27(28):4685–4692. doi:10.1200/JCO.2008.20.6789

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  28. 28.

    Wang LX, Plautz GE (2012) T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat 134(1):61–70. doi:10.1007/s10549-011-1912-5

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. 29.

    Montgomery RB, Makary E, Schiffman K, Goodell V, Disis ML (2005) Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res 65(2):650–656

    CAS  PubMed  Google Scholar 

  30. 30.

    Wang X, Sun Y, Wong J, Conklin DS (2013) PPARgamma maintains ERBB2-positive breast cancer stem cells. Oncogene 32(49):5512–5521. doi:10.1038/onc.2013.217

    PubMed Central  Article  CAS  PubMed  Google Scholar 

Download references


This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009-0068859). MLD is supported by the Athena Distinguished Professor of Breast Cancer Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to Kyong Hwa Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gil, EY., Jo, UH., Lee, H.J. et al. Vaccination with ErbB-2 peptides prevents cancer stem cell expansion and suppresses the development of spontaneous tumors in MMTV-PyMT transgenic mice. Breast Cancer Res Treat 147, 69–80 (2014).

Download citation


  • Breast cancer
  • ErbB-2
  • Peptide vaccine
  • Cancer stem cell
  • Spontaneous tumor