Skip to main content

Advertisement

Log in

Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end-joining pathway required for the repair of DNA double-strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. We evaluated clinicopathological significance of DNA-PKcs protein expression in 1,161 tumours and DNA-PKcs mRNA expression in 1,950 tumours. We correlated DNA-PKcs to markers of aggressive phenotypes, DNA repair, apoptosis, cell cycle regulation and survival. Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps < 0.05). The absence of BRCA1, low XRCC1, low SMUG1, low APE1 and low Polβ was also more likely in low DNA-PKcs expressing tumours (ps < 0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer-specific survival (BCSS) in univariate and multivariate analysis (ps < 0.01). At the mRNA level, similarly, low DNA-PKcs was associated with poor BCSS. In patients with ER-positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER-negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kong X, Shen Y, Jiang N, Fei X, Mi J (2011) Emerging roles of DNA-PK besides DNA repair. Cell Signal 23(8):1273–1280. doi:10.1016/j.cellsig.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  2. Neal JA, Meek K (2011) Choosing the right path: does DNA-PK help make the decision? Mutat Res 711(1–2):73–86. doi:10.1016/j.mrfmmm.2011.02.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hill R, Lee PW (2010) The DNA-dependent protein kinase (DNA-PK): more than just a case of making ends meet? Cell Cycle 9(17):3460–3469

    Article  CAS  PubMed  Google Scholar 

  4. Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33–58. doi:10.1016/S0065-2776(08)00602-0

    Article  CAS  PubMed  Google Scholar 

  5. Salles B, Calsou P, Frit P, Muller C (2006) The DNA repair complex DNA-PK, a pharmacological target in cancer chemotherapy and radiotherapy. Pathol Biol 54(4):185–193. doi:10.1016/j.patbio.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  6. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24(6):949–961. doi:10.1038/sj.onc.1208332

    Article  CAS  PubMed  Google Scholar 

  7. van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9(6):503–509. doi:10.1097/ACI.0b013e3283327e41

    Article  PubMed  Google Scholar 

  8. Wang SY, Peng L, Li CP, Li AP, Zhou JW, Zhang ZD et al (2008) Genetic variants of the XRCC7 gene involved in DNA repair and risk of human bladder cancer. Int J Urol 15(6):534–539. doi:10.1111/j.1442-2042.2008.02049.x

    Article  CAS  PubMed  Google Scholar 

  9. Long XD, Yao JG, Huang YZ, Huang XY, Ban FZ, Yao LM et al (2011) DNA repair gene XRCC7 polymorphisms (rs#7003908 and rs#10109984) and hepatocellular carcinoma related to AFB1 exposure among Guangxi population, China. Hepatol Res 41(11):1085–1093. doi:10.1111/j.1872-034X.2011.00866.x

    Article  CAS  PubMed  Google Scholar 

  10. Hu Z, Liu H, Wang H, Miao R, Sun W, Jin G et al (2008) Tagging single nucleotide polymorphisms in phosphoinositide-3-kinase-related protein kinase genes involved in DNA damage “checkpoints” and lung cancer susceptibility. Clin Cancer Res 14(9):2887–2891. doi:10.1158/1078-0432.CCR-07-1822

    Article  CAS  PubMed  Google Scholar 

  11. Wang X, Szabo C, Qian C, Amadio PG, Thibodeau SN, Cerhan JR et al (2008) Mutational analysis of thirty-two double-strand DNA break repair genes in breast and pancreatic cancers. Cancer Res 68(4):971–975. doi:10.1158/0008-5472.CAN-07-6272

    Article  CAS  PubMed  Google Scholar 

  12. Hsu FM, Zhang S, Chen BP (2012) Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 1(1):22–34. doi:10.3978/j.issn.2218-676X.2012.04.01

    PubMed Central  PubMed  Google Scholar 

  13. Zhuang W, Li B, Long L, Chen L, Huang Q, Liang ZQ (2011) Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res 1371:7–15. doi:10.1016/j.brainres.2010.11.044

    Article  CAS  PubMed  Google Scholar 

  14. Du L, Zhou LJ, Pan XJ, Wang YX, Xu QZ, Yang ZH et al (2010) Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo. Radiat Oncol 5:70. doi:10.1186/1748-717X-5-70

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E et al (2005) DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65(12):4987–4992. doi:10.1158/0008-5472.CAN-04-4250

    Article  CAS  PubMed  Google Scholar 

  16. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 97(16):1180–1184. doi:10.1093/jnci/dji237

    Article  CAS  PubMed  Google Scholar 

  17. Abdel-Fatah TM, Russell R, Agarwal D, Moseley P, Abayomi MA, Perry C et al (2014) DNA polymerase beta deficiency is linked to aggressive breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression in multiple cohorts. Mol Oncol 8(3):520–532. doi:10.1016/j.molonc.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Fatah TM, Perry C, Moseley P, Johnson K, Arora A, Chan S et al (2014) Clinicopathological significance of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in oestrogen-receptor-positive breast cancer. Breast Cancer Res Treat 143(3):411–421. doi:10.1007/s10549-013-2820-7

    Article  CAS  PubMed  Google Scholar 

  19. Abdel-Fatah TM, Albarakati N, Bowell L, Agarwal D, Moseley P, Hawkes C et al (2013) Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1) deficiency is linked to aggressive breast cancer and predicts response to adjuvant therapy. Breast Cancer Res Treat 142(3):515–527. doi:10.1007/s10549-013-2769-6

    Article  CAS  PubMed  Google Scholar 

  20. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997–4013. doi:10.1200/JCO.2013.50.9984

    Article  PubMed  Google Scholar 

  21. Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C et al (2013) Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res 73(5):1621–1634. doi:10.1158/0008-5472.CAN-12-2929

    Article  CAS  PubMed  Google Scholar 

  22. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Medunjanin S, Weinert S, Schmeisser A, Mayer D, Braun-Dullaeus RC (2010) Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-alpha. Mol Biol Cell 21(9):1620–1628. doi:10.1091/mbc.E09-08-0724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Loeb LA (2010) Mutator phenotype in cancer: origin and consequences. Semin Cancer Biol 20(5):279–280. doi:10.1016/j.semcancer.2010.10.006

    Article  PubMed Central  PubMed  Google Scholar 

  25. Loeb LA, Bielas JH, Beckman RA (2008) Cancers exhibit a mutator phenotype: clinical implications. Cancer Res 68(10):3551–3557. doi:10.1158/0008-5472.CAN-07-5835 discussion 3557

    Article  CAS  PubMed  Google Scholar 

  26. Lee HS, Choe G, Park KU, Park do J, Yang HK, Lee BL et al (2007) Altered expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) during gastric carcinogenesis and its clinical implications on gastric cancer. Int J Oncol 31(4):859–866

    CAS  PubMed  Google Scholar 

  27. Lee HS, Yang HK, Kim WH, Choe G (2005) Loss of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in gastric cancers. Cancer Res Treat 37(2):98–102. doi:10.4143/crt.2005.37.2.98

    Article  PubMed Central  PubMed  Google Scholar 

  28. Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW (1999) DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues. Oncogene 18(20):3114–3126. doi:10.1038/sj.onc.1202640

    Article  CAS  PubMed  Google Scholar 

  29. Shao SL, Cai Y, Wang QH, Yan LJ, Zhao XY, Wang LX (2007) Expression of GLUT-1, p63 and DNA-Pkcs in serous ovarian tumors and their significance. Zhonghua zhong liu za zhi (Chin J Oncol) 29(9):697–700

    CAS  Google Scholar 

  30. Soderlund Leifler K, Queseth S, Fornander T, Askmalm MS (2010) Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol 37(6):1547–1554

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Madhusudan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Fatah, T., Arora, A., Agarwal, D. et al. Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers. Breast Cancer Res Treat 146, 309–320 (2014). https://doi.org/10.1007/s10549-014-3035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3035-2

Keywords

Navigation