Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition


Nearly half of breast carcinoma metastases will become clinically evident five or more years after primary tumor ablation. This implies that metastatic cancer cells survived over an extended timeframe without emerging as detectable nodules. The liver is a common metastatic destination, whose parenchymal hepatocytes have been shown to impart a less invasive, dormant phenotype on metastatic cancer cells. We investigated whether hepatic nonparenchymal cells (NPCs) contributed to metastatic breast cancer cell outgrowth and a mesenchymal phenotypic shift indicative of emergence. Co-culture experiments of primary human hepatocytes, NPCs or endothelial cell lines (TMNK-1 or HMEC-1) and breast cancer cell lines (MCF-7 or MDA-MB-231) were conducted. Exposure of carcinoma cells to NPC-conditioned medium isolated soluble factors contributing to outgrowth. To elucidate outgrowth mechanism, epidermal growth factor receptor (EGFR) inhibition co-culture experiments were performed. Flow cytometry analyses and immunofluorescence staining were conducted to quantify breast cancer cell outgrowth and phenotype, respectively. Outgrowth of the MDA-MB-231 cells within primary NPC co-cultures was substantially greater than in hepatocyte-only or hepatocyte+NPC co-cultures. MCF-7 cells co-cultured with human NPCs as well as with the endothelial NPC subtypes grew out significantly more than controls. MCF-7 cells underwent a mesenchymal shift as indicated by spindle morphology, membrane clearance of E-cadherin, and p38 nuclear translocation when in HMEC-1 co-culture. HMEC-1-conditioned medium induced similar results suggesting that secretory factors are responsible for this transition while blocking EGFR blunted the MCF-7 outgrowth. We conclude that NPCs in the metastatic hepatic niche secrete factors that can induce a partial mesenchymal shift in epithelial breast cancer cells thus initiating outgrowth, and that this is in part mediated by EGFR activation. These data suggest that changes in the parenchymal cell and NPC ratios (or activation status) in the liver metastatic microenvironment may contribute to emergence from metastatic dormancy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Mesenchymal to epithelial reverting transition


Epithelial to mesenchymal transition


Mesenchymal to epithelial transition


Nonparenchymal cells


Epidermal growth factor receptor


Hepatocyte maintenance medium


  1. 1.

    Demicheli R (2001) Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 11(4):297–306. doi:10.1006/scbi 2001.0385

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Taylor DP, Wells JZ, Savol A, Chennubhotla C, Wells A (2013) Modeling boundary conditions for balanced proliferation in metastatic latency. Clin Cancer Res 19(5):1063–1070. doi:10.1158/1078-0432.CCR-12-3180

    PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    Aguirre-Ghiso JA (2006) The problem of cancer dormancy: understanding the basic mechanisms and identifying therapeutic opportunities. Cell Cycle 5(16):1740–1743

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  4. 4.

    Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179. doi:10.1186/1476-4598-9-179

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  6. 6.

    Gunasinghe NP, Wells A, Thompson EW, Hugo HJ (2012) Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. doi:10.1007/s10555-012-9377-5

    PubMed  Google Scholar 

  7. 7.

    Yates CC, Shepard CR, Stolz DB, Wells A (2007) Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer 96(8):1246–1252. doi:10.1038/sj.bjc.6603700

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kassis J, Lauffenburger DA, Turner T, Wells A (2001) Tumor invasion as dysregulated cell motility. Semin Cancer Biol 11(2):105–117. doi:10.1006/scbi.2000.0362S1044-579X(00)90362-6

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Kim NG, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108(29):11930–11935. doi:10.1073/pnas.1103345108

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A (2012) Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 5(1):19–28. doi:10.1007/s12307-011-0085-4

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  11. 11.

    Kowalski PJ, Rubin MA, Kleer CG (2003) E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res 5(6):R217–R222. doi:10.1186/bcr651

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  12. 12.

    Chao Y, Wu Q, Shepard C, Wells A (2012) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39–50. doi:10.1007/s10585-011-9427-3

    PubMed  Article  PubMed Central  CAS  Google Scholar 

  13. 13.

    Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP (2011) Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell 22(14):2423–2435. doi:10.1091/mbc.E11-04-0306

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  14. 14.

    Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, Morris VL, Groom AC, Chambers AF (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2168

    PubMed  CAS  Google Scholar 

  15. 15.

    Kmiec Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161:III–XIII, 1–151

    Google Scholar 

  16. 16.

    Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300. doi:10.1002/jcp.21172

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  17. 17.

    Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847. doi:10.1038/nrm1489nrm1489

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Michalopoulos G, Cianciulli HD, Novotny AR, Kligerman AD, Strom SC, Jirtle RL (1982) Liver regeneration studies with rat hepatocytes in primary culture. Cancer Res 42(11):4673–4682

    PubMed  CAS  Google Scholar 

  19. 19.

    Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res 43(6):2704–2711

    PubMed  CAS  Google Scholar 

  20. 20.

    Matsumura T, Takesue M, Westerman KA, Okitsu T, Sakaguchi M, Fukazawa T, Totsugawa T, Noguchi H, Yamamoto S, Stolz DB, Tanaka N, Leboulch P, Kobayashi N (2004) Establishment of an immortalized human-liver endothelial cell line with SV40T and hTERT. Transplantation 77(9):1357–1365

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Investig Dermatol 99(6):683–690

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009) p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15(8):369–379. doi:10.1016/j.molmed.2009.06.005

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  23. 23.

    Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Metastasis awakening: targeting dormant cancer. Nat Med 19(3):276–277. doi:10.1038/nm.3120

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  24. 24.

    Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA (2006) Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 5(7):729–735

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  25. 25.

    Gong X, Ming X, Deng P, Jiang Y (2010) Mechanisms regulating the nuclear translocation of p38 MAP kinase. J Cell Biochem 110(6):1420–1429. doi:10.1002/jcb.22675

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25(3):409–416. doi:10.1007/s10555-006-9005-3

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C, Mareel M (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18(9):1016–1018. doi:10.1096/fj.03-1110fje

    PubMed  Google Scholar 

  28. 28.

    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241. doi:10.1056/NEJMoa022152

    PubMed  Article  Google Scholar 

  29. 29.

    Rubio N, Espana L, Fernandez Y, Blanco J, Sierra A (2001) Metastatic behavior of human breast carcinomas overexpressing the Bcl-x(L) gene: a role in dormancy and organospecificity. Lab Investig 81(5):725–734

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Shepard CR, Kassis J, Whaley DL, Kim HG, Wells A (2007) PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26(21):3020–3026. doi:10.1038/sj.onc.1210115

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Davidson NE, Visvanathan K, Emens L (2003) New findings about endocrine therapy for breast cancer. Breast 12(6):368–372

    PubMed  Article  Google Scholar 

Download references


These studies were supported by Grants from the NIH NCATS program (TR000496) and by a Merit Award from the VA. The authors thank members of Wells laboratory and Linda Griffith and her laboratory members at MIT.

Conflict of interest

The authors have no conflicts to declare.

Author information



Corresponding author

Correspondence to Alan Wells.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, D.P., Clark, A., Wheeler, S. et al. Hepatic nonparenchymal cells drive metastatic breast cancer outgrowth and partial epithelial to mesenchymal transition. Breast Cancer Res Treat 144, 551–560 (2014). https://doi.org/10.1007/s10549-014-2875-0

Download citation


  • Mesenchymal to epithelial reverting transition
  • Epithelial to mesenchymal transition
  • Nonparenchymal cells
  • Hepatic microenvironment
  • Metastatic dormancy
  • Metastatic emergence
  • Mesenchymal to epithelial transition