Skip to main content
Log in

Tamoxifen dose and serum concentrations of tamoxifen and six of its metabolites in routine clinical outpatient care

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

A sensitive and selective HPLC–MS/MS assay was used to analyze steady-state serum concentrations of tamoxifen, N-desmethyltamoxifen (E)-endoxifen, (Z)-endoxifen, N-desmethyl-4′-hydroxytamoxifen, 4-hydroxytamoxifen, and 4′-hydroxytamoxifen to support therapeutic drug monitoring (TDM) in patients treated with tamoxifen according to standard of care. When the (Z)-endoxifen serum concentration was below the predefined therapeutic threshold concentration of 5.9 ng/mL, the clinician was advised to increase the tamoxifen dose and to collect another serum sample. Paired serum samples from patients at one dose level at different time points during the tamoxifen treatment were used to assess the intra-patient variability. A total of 251 serum samples were analyzed, obtained from 205 patients. Of these patients, 197 used 20 mg tamoxifen per day and 8 patients used 10 mg/day. There was wide variability in tamoxifen and metabolite concentrations within the dosing groups. The threshold concentration for (Z)-endoxifen was reached in one patient (12 %) in the 10 mg group, in 153 patients (78 %) in the 20 mg group, and in 26 (96 %) of the patients who received a dose increase to 30 or 40 mg/day. Dose increase from 20 to 30 or 40 mg per day resulted in a significant increase in the mean serum concentrations of all analytes (p < 0.001). The mean intra-patient variability was between 10 and 20 % for all analytes. These results support the suitability of TDM for optimizing the tamoxifen treatment. It is shown that tamoxifen dose is related to (Z)-endoxifen exposure and increasing this dose leads to a higher serum concentration of tamoxifen and its metabolites. The low intra-patient variability suggests that only one serum sample is needed for TDM, making this a relatively noninvasive way to optimize the patient’s treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anticancer Agents Med Chem 9:481–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Shao W, Brown M (2004) Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6:39–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Davies C, Godwin J, Gray R et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771–784

    Article  CAS  PubMed  Google Scholar 

  4. Beelen K, Zwart W, Linn SC (2012) Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? Nat Rev Clin Oncol 9:529–541. doi:10.1038/nrclinonc.2012.121

    Article  CAS  PubMed  Google Scholar 

  5. Bratherton DG, Brown CH, Buchanan R et al (1984) A comparison of two doses of tamoxifen (Nolvadex) in postmenopausal women with advanced breast cancer: 10 mg bd versus 20 mg bd. Br J Cancer 50:199–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ward HW (1973) Anti-oestrogen therapy for breast cancer: a trial of tamoxifen at two dose levels. Brit Med J 1:13–14

    Article  CAS  PubMed  Google Scholar 

  7. Teunissen SF, Rosing H, Seoane MD et al (2011) Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques. J Pharm Biomed Anal 55:518–526

    Article  CAS  PubMed  Google Scholar 

  8. Murdter TE, Schroth W, Bacchus-Gerybadze L et al (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89:708–717

    Article  CAS  PubMed  Google Scholar 

  9. O’Neill M, Heckelman P, Koch C, Roman K (2006) The Merck Index, 14th edn. 1554 pp

  10. Katzenellenbogen BS, Norman MJ, Eckert RL et al (1984) Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res 44:112–119

    CAS  PubMed  Google Scholar 

  11. Katzenellenbogen JA, Carlson KE, Katzenellenbogen BS (1985) Facile geometric isomerization of phenolic non-steroidal estrogens and antiestrogens: limitations to the interpretation of experiments characterizing the activity of individual isomers. J Steroid Biochem 22:589–596

    Article  CAS  PubMed  Google Scholar 

  12. Robertson DW, Katzenellenbogen JA, Long DJ et al (1982) Tamoxifen antiestrogens. A comparison of the activity, pharmacokinetics, and metabolic activation of the cis and trans isomers of tamoxifen. J Steroid Biochem 16:1–13

    Article  CAS  PubMed  Google Scholar 

  13. Jordan VC, Haldemann B, Allen KE (1981) Geometric isomers of substituted triphenylethylenes and antiestrogen action. Endocrinology 108:1353–1361

    Article  CAS  PubMed  Google Scholar 

  14. Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55:471–478

    Article  CAS  PubMed  Google Scholar 

  15. Johnson MD, Zuo H, Lee KH et al (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85:151–159

    Article  CAS  PubMed  Google Scholar 

  16. Lu WJ, Desta Z, Flockhart DA (2012) Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer. Breast Cancer Res Treat 131:473–481. doi:10.1007/s10549-011-1428-z

    Article  CAS  PubMed  Google Scholar 

  17. Wu X, Hawse JR, Subramaniam M et al (2009) The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 69:1722–1727. doi:10.1158/0008-5472.CAN-08-3933

    Article  CAS  PubMed  Google Scholar 

  18. Hawse JR, Subramaniam M, Cicek M et al (2013) Endoxifen’s molecular mechanisms of action are concentration dependent and different than that of other anti-estrogens. PLoS One 8:e54613. doi:10.1371/journal.pone.0054613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gong IY, Teft W, Ly J et al (2013) Determination of clinically therapeutic endoxifen concentrations based on efficacy from human MCF7 breast cancer xenografts. Breast Cancer Res Treat 450:61–69. doi:10.1007/s10549-013-2530-1

    Article  Google Scholar 

  20. Madlensky L, Natarajan L, Tchu S et al (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89:718–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Borges S, Desta Z, Li L et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80:61–74

    Article  CAS  PubMed  Google Scholar 

  22. Lien E, Søiland H, Lundgren S (2013) Serum concentrations of tamoxifen and its metabolites increase with age during steady-state treatment. Breast Cancer Res Treat. doi:10.1007/s10549-013-2677-9

    PubMed Central  PubMed  Google Scholar 

  23. Jager NGL, Rosing H, Linn SC et al (2012) Importance of highly selective LC-MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen. Breast Cancer Res Treat 133:793–798. doi:10.1007/s10549-012-2000-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lønning P, Lien E (1992) Clinical pharmacokinetics of endocrine agents used in advanced breast cancer. Clin Pharmacokinet 22:327–358

    Article  PubMed  Google Scholar 

  25. Adam H, Patterson J, Kemp J (1980) Studies on the metabolism and pharmacokinetics of tamoxifen in normal volunteers. Cancer Treat Rep 64:761–764

    CAS  PubMed  Google Scholar 

  26. Fabian C, Sternson L, Barnett M (1980) Clinical pharmacology of tamoxifen in patients with breast cancer: comparison of traditional and loading dose schedules. Cancer Treat Rep 64:765–773

    CAS  PubMed  Google Scholar 

  27. Teunissen SF, Jager NGL, Rosing H et al (2011) Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr, B Anal Technol Biomed Life Sci 879:1677–1685

    Article  CAS  Google Scholar 

  28. Food and Drug Administration (2001) Guidance for industry: bioanalytical method validation. USA Food and Drug Administration, pp 4–10

  29. European Medicines Agency (2011) Guideline on bioanalytical method validation. European Medicines Agency, pp 4–10

  30. Irvin WJ Jr, Walko CM, Weck KE et al (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a Multicenter Study. J Clin Oncol 29:3232–3239

    Article  CAS  PubMed  Google Scholar 

  31. Barginear MF, Jaremko M, Peter I et al (2011) Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the Antiestrogenic Activity Score. Clin Pharmacol Ther 90:605–611

    Article  CAS  PubMed  Google Scholar 

  32. Sismondi P, Biglia N, Volpi E et al (1994) Tamoxifen and endometrial cancer. Ann New York Acad Sci 734:310–321

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. L. Jager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jager, N.G.L., Rosing, H., Schellens, J.H.M. et al. Tamoxifen dose and serum concentrations of tamoxifen and six of its metabolites in routine clinical outpatient care. Breast Cancer Res Treat 143, 477–483 (2014). https://doi.org/10.1007/s10549-013-2826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2826-1

Keywords

Navigation