Skip to main content

Advertisement

Log in

MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2)

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) mediates multidrug resistance (MDR) in breast cancers. In this study, we aimed to investigate the role of microRNAs in regulation of BCRP expression and BCRP-mediated drug resistance in breast cancer cells. Microarray analysis was performed to determine the differential expression patterns of miRNAs that target BCRP between the MX-resistant breast cancer cell line MCF-7/MX and its parental MX-sensitive cell line MCF-7. MiR-181a was found to be the most significantly down-regulated miRNA in MCF-7/MX cells. Luciferase activity assay showed that miR-181a mimics inhibited BCRP expression by targeting the 3′ untranslated region (UTR) of the BCRP mRNA. Overexpression of miR-181a down-regulated BCRP expression, and sensitized MX-resistant MCF-7/MX cells to MX. In a nude mouse xenograft model, intratumoral injection of miR-181a mimics inhibited BCRP expression, and enhanced the antitumor activity of MX. In addition, miR-181a inhibitors up-regulated BCRP expression, and rendered MX-sensitive MCF-7 cells resistant to MX. These findings suggest that miR-181a regulates BCRP expression via binding to the 3′-UTR of BCRP mRNA. MiR-181a is critical for regulation of BCRP-mediated resistance to MX. MiR-181a may be a potential target for preventing and reversing drug resistance in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002, CA. Cancer J Clin 55(2):74–108

    Article  Google Scholar 

  2. Kuo MT (2007) Roles of multidrug resistance genes in breast cancer chemoresistance. Adv Exp Med Biol 608:23–30

    Article  PubMed  CAS  Google Scholar 

  3. Knutsen T, Rao VK, Ried T, Mickley L, Schneider E, Miyake K, Ghadimi BM, Padilla-Nash H, Pack S, Greenberger L, Cowan K, Dean M, Fojo T, Bates S (2000) Amplification of 4q21–q22 and the MXR gene in independently derived mitoxantrone-resistant cell lines. Genes Chromosomes Cancer 27(1):110–116

    Article  PubMed  CAS  Google Scholar 

  4. Ni Z, Bikadi Z, Rosenberg MF, Mao Q (2010) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11(7):603–617

    Article  PubMed  CAS  Google Scholar 

  5. Nakanishi T, Ross DD (2012) Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31(2):73–99. doi:10.5732/cjc.011.10320

    Article  PubMed  CAS  Google Scholar 

  6. Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Mizuta Y, Murase K, Yoshida H, Ross DD, Kohno S (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108(1):146–151. doi:10.1002/ijc.11528

    Article  PubMed  CAS  Google Scholar 

  7. Selever J, Gu G, Lewis MT, Beyer A, Herynk MH, Covington KR, Tsimelzon A, Dontu G, Provost P, Di Pietro A, Boumendjel A, Albain K, Miele L, Weiss H, Barone I, Ando S, Fuqua SA (2011) Dicer-mediated upregulation of BCRP confers tamoxifen resistance in human breast cancer cells. Clin Cancer Res 17(20):6510–6521. doi:10.1158/1078-0432.ccr-11-1403

    Article  PubMed  CAS  Google Scholar 

  8. Hou X, Huang F, Carboni JM, Flatten K, Asmann YW, Ten Eyck C, Nakanishi T, Tibodeau JD, Ross DD, Gottardis MM, Erlichman C, Kaufmann SH, Haluska P (2011) Drug efflux by breast cancer resistance protein is a mechanism of resistance to the benzimidazole insulin-like growth factor receptor/insulin receptor inhibitor, BMS-536924. Mol Cancer Ther 10(1):117–125. doi:10.1158/1535-7163.mct-10-0438

    Article  PubMed  CAS  Google Scholar 

  9. Burger H, Foekens JA, Look MP, Meijer-van Gelder ME, Klijn JG, Wiemer EA, Stoter G, Nooter K (2003) RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 9(2):827–836

    PubMed  CAS  Google Scholar 

  10. Nguyen NP, Almeida FS, Chi A, Nguyen LM, Cohen D, Karlsson U, Vinh-Hung V (2010) Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev 36(6):485–491. doi:10.1016/j.ctrv.2010.02.016

    Article  PubMed  CAS  Google Scholar 

  11. Fiorucci G, Chiantore MV, Mangino G, Percario ZA, Affabris E, Romeo G (2012) Cancer regulator microRNA: potential relevance in diagnosis, prognosis and treatment of cancer. Curr Med Chem 19(4):461–474

    Article  PubMed  CAS  Google Scholar 

  12. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi:10.1038/35057062

    Article  PubMed  CAS  Google Scholar 

  13. Jensen LE, Whitehead AS (2004) The 3′ untranslated region of the membrane-bound IL-1R accessory protein mRNA confers tissue-specific destabilization. J Immunol 173(10):6248–6258

    PubMed  CAS  Google Scholar 

  14. To KK, Robey RW, Knutsen T, Zhan Z, Ried T, Bates SE (2009) Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther 8(10):2959–2968. doi:10.1158/1535-7163.mct-09-0292

    Article  PubMed  CAS  Google Scholar 

  15. To KK, Zhan Z, Litman T, Bates SE (2008) Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 28(17):5147–5161. doi:10.1128/mcb.00331-08

    Article  PubMed  CAS  Google Scholar 

  16. Wang F, Xue X, Wei J, An Y, Yao J, Cai H, Wu J, Dai C, Qian Z, Xu Z, Miao Y (2010) hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer 103(4):567–574. doi:10.1038/sj.bjc.6605724

    Article  PubMed  CAS  Google Scholar 

  17. Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75(6):1374–1379. doi:10.1124/mol.108.054163

    Article  PubMed  CAS  Google Scholar 

  18. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358. doi:10.1016/j.bbrc.2005.07.030

    Article  PubMed  CAS  Google Scholar 

  19. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21(5):578–589. doi:10.1101/gad.1522907

    Article  PubMed  CAS  Google Scholar 

  20. Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V, Roche H, Dalenc F, Auboeuf D, Millevoi S, Vagner S (2009) Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res 69(21):8332–8340. doi:10.1158/0008-5472.can-09-2206

    Article  PubMed  CAS  Google Scholar 

  21. Yao Y, Suo AL, Li ZF, Liu LY, Tian T, Ni L, Zhang WG, Nan KJ, Song TS, Huang C (2009) MicroRNA profiling of human gastric cancer. Mol Med Report 2(6):963–970. doi:10.3892/mmr_00000199

    CAS  Google Scholar 

  22. Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L (2011) Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers. Int J Mol Med 28(3):327–336. doi:10.3892/ijmm.2011.714

    PubMed  Google Scholar 

  23. Marton S, Garcia MR, Robello C, Persson H, Trajtenberg F, Pritsch O, Rovira C, Naya H, Dighiero G, Cayota A (2008) Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22(2):330–338. doi:10.1038/sj.leu.2405022

    Article  PubMed  CAS  Google Scholar 

  24. Fei J, Li Y, Zhu X, Luo X (2012) miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS ONE 7(3):e32834. doi:10.1371/journal.pone.0032834

    Article  PubMed  CAS  Google Scholar 

  25. Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupe P, Robert T, Ripoche H, Lazar V, Harel-Bellan A, Dessen P, Barillot E, Kroemer G (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70(5):1793–1803. doi:10.1158/0008-5472.can-09-3112

    Article  PubMed  CAS  Google Scholar 

  26. Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X, Wu X (2012) MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene. doi:10.1038/onc.2012.323

    Google Scholar 

  27. Li H, Hui L, Xu W (2012) miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim Biophys Sin (Shanghai) 44(3):269–277. doi:10.1093/abbs/gmr128

    Article  CAS  Google Scholar 

  28. Bai H, Cao Z, Deng C, Zhou L, Wang C (2012) miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol 138(4):595–602. doi:10.1007/s00432-011-1137-3

    Article  PubMed  CAS  Google Scholar 

  29. Guo LJ, Zhang QY (2012) Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med 30(3):680–686. doi:10.3892/ijmm.2012.1021

    PubMed  CAS  Google Scholar 

  30. Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123(1):150–163. doi:10.1172/jci64946

    Article  PubMed  CAS  Google Scholar 

  31. Li S, Yang C, Zhai L, Zhang W, Yu J, Gu F, Lang R, Fan Y, Gong M, Zhang X, Fu L (2012) Deep sequencing reveals small RNA characterization of invasive micropapillary carcinomas of the breast. Breast Cancer Res Treat 136(1):77–87. doi:10.1007/s10549-012-2166-6

    Article  PubMed  CAS  Google Scholar 

  32. Tekirdag KA, Korkmaz G, Ozturk DG, Agami R, Gozuacik D (2013) MIR181A regulates starvation- and rapamycin-induced autophagy through targeting of ATG5. Autophagy 9(3):374–385

    Article  PubMed  CAS  Google Scholar 

  33. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454. doi:10.1093/bioinformatics/bth078

    Article  PubMed  Google Scholar 

  34. Saldanha AJ (2004) Java treeview–extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. doi:10.1093/bioinformatics/bth349

    Article  PubMed  CAS  Google Scholar 

  35. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, Wagar N, Yoon Y, Cho HT, Scala S, Shim H (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79(6):817–824. doi:10.1016/j.bcp.2009.10.017

    Article  PubMed  CAS  Google Scholar 

  36. Peng H, Dong Z, Qi J, Yang Y, Liu Y, Li Z, Xu J, Zhang JT (2009) A novel two mode-acting inhibitor of ABCG2-mediated multidrug transport and resistance in cancer chemotherapy. PLoS ONE 4(5):e5676. doi:10.1371/journal.pone.0005676

    Article  PubMed  Google Scholar 

  37. Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127(8):1785–1794. doi:10.1002/ijc.25191

    Article  PubMed  CAS  Google Scholar 

  38. Ward A, Balwierz A, Zhang JD, Kublbeck M, Pawitan Y, Hielscher T, Wiemann S, Sahin O (2012) Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. doi:10.1038/onc.2012.128

    Google Scholar 

  39. Cuesta R, Martinez-Sanchez A, Gebauer F (2009) miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol Cell Biol 29(10):2841–2851. doi:10.1128/mcb.01971-08

    Article  PubMed  CAS  Google Scholar 

  40. Zhang X, Nie Y, Du Y, Cao J, Shen B, Li Y (2012) MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol 33(5):1589–1597. doi:10.1007/s13277-012-0414-3

    Article  PubMed  Google Scholar 

  41. Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH (2011) miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem Biophys Res Commun 404(4):896–902. doi:10.1016/j.bbrc.2010.12.055

    Article  PubMed  CAS  Google Scholar 

  42. Brangi M, Litman T, Ciotti M, Nishiyama K, Kohlhagen G, Takimoto C, Robey R, Pommier Y, Fojo T, Bates SE (1999) Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 59(23):5938–5946

    PubMed  CAS  Google Scholar 

  43. Wander SA, Zhao D, Besser AH, Hong F, Wei J, Ince TA, Milikowski C, Bishopric NH, Minn AJ, Creighton CJ, Slingerland JM (2013) PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro: implications for targeted therapy. Breast Cancer Res Treat 138(2):369–381. doi:10.1007/s10549-012-2389-6

    Article  PubMed  CAS  Google Scholar 

  44. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M, Bonanno E, Muto G, Frajese GV, De Maria R, Spagnoli LG, Farace MG, Ciafre SA (2008) The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE 3(12):e4029. doi:10.1371/journal.pone.0004029

    Article  PubMed  Google Scholar 

  45. Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, Zhang Q, Wang C, Zhuang SM, Zheng L, Liang A, Tao W, Cao X (2011) Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 19(2):232–243. doi:10.1016/j.ccr.2011.01.001

    Article  PubMed  CAS  Google Scholar 

  46. Fedier A, Schwarz VA, Walt H, Carpini RD, Haller U, Fink D (2001) Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int J Cancer 93(4):571–576

    Article  PubMed  Google Scholar 

  47. Lu H, Hallstrom TC (2012) Sensitivity to TOP2 targeting chemotherapeutics is regulated by Oct1 and FILIP1L. PLoS ONE 7(8):e42921. doi:10.1371/journal.pone.0042921

    Article  PubMed  CAS  Google Scholar 

  48. Goler-Baron V, Sladkevich I, Assaraf YG (2012) Inhibition of the PI3K-Akt signaling pathway disrupts ABCG2-rich extracellular vesicles and overcomes multidrug resistance in breast cancer cells. Biochem Pharmacol 83(10):1340–1348. doi:10.1016/j.bcp.2012.01.033

    Article  PubMed  CAS  Google Scholar 

  49. Ji J, Yamashita T, Wang XW (2011) Wnt/beta-catenin signaling activates microRNA-181 expression in hepatocellular carcinoma. Cell Biosci 1(1):4. doi:10.1186/2045-3701-1-4

    Article  PubMed  CAS  Google Scholar 

  50. Bisso A, Faleschini M, Zampa F, Capaci V, De Santa J, Santarpia L, Piazza S, Cappelletti V, Daidone M, Agami R, Del Sal G (2013) Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 12(11):251–266

    Article  Google Scholar 

  51. Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, Liu P, Hong M, Miao KR, Xu W, Li JY (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33(7):1294–1301. doi:10.1093/carcin/bgs179

    Article  PubMed  CAS  Google Scholar 

  52. Su SF, Chang YW, Andreu-Vieyra C, Fang JY, Yang Z, Han B, Lee AS, Liang G (2012) miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene. doi:10.1038/onc.2012.483

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr Zhirong Zhan (Molecular Therapeutics Section, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA) for providing the MCF-7/MX cell. We also greatly appreciate the generous help from Qinghuan Xiao for typing and editing this manuscript. This work was supported by grants from National Natural Science Foundation of China (No. 30973559, No. 81173092), and this study was also supported by Liaoning S&T Projects (No. 2011415052), and Shenyang Technology Projects (No. F11-264-1-19).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjie Wei.

Additional information

Xuyang Jiao and Lin Zhao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, X., Zhao, L., Ma, M. et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 139, 717–730 (2013). https://doi.org/10.1007/s10549-013-2607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2607-x

Keywords

Navigation